【状态估计】基于二进制粒子群优化 (BPSO) 求解最佳 PMU优化配置研究【IEEE30、39、57、118节点】(Matlab代码实现)

简介: 【状态估计】基于二进制粒子群优化 (BPSO) 求解最佳 PMU优化配置研究【IEEE30、39、57、118节点】(Matlab代码实现)

👨‍🎓个人主页:研学社的博客

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


image.gif

💥1 概述

近 年 来 ,随 着 大 量 分 布 式 电 源(distributed generation)接入配电网,使配电网朝着更加灵活的方向发展,配电网管理模式从被动向主动转变[1] 。状态估计是通过建立适当的网络模型对配电网进行在线监测和分析的功能。随着分布式能源集成对系统建模和运行的影响越来越大,对配电系统状态估计要求也越来越严格[2] 。目前,电力系统大多数据来源于数据采集与监控(SCADA)系统,但该系统量测数据采集周期较长,无法得到电网中的实时数据。虽然同步相量量测单元能够提供高精度的实时量测数据来提高状态估计精度[3] ,但由于成本和技术的限制,我国配电网安装的 PMU 装置数量有限,得到的实时量测数据较少。状态估计作为配电管理系统不可或缺的组成要素,其主要研究内容是如何在有限数量的 PMU 量测装置情况下尽可能地提高配电网状态估计精度。国内外已有大量学者针对最优 PMU 装置optimal PMU placementOPP)进行了大量的研究[4-9] 目前,PMU 量测装置的优化目标主要分为满足系统可观性(拓扑可观和数值可观)

[10-12] 和提高状态估计精度[13-15] 两大类,解决这两类问题的对应优化算法有数值优化算法和启发式优化算法。数值优化算法主要分为穷举法和整数规划法,虽然整数规划法发展较为成熟,但配电网节点数目较多,短时间不可能大规模安装 PMU 量测装置,所以整数规划法不满足系统可观性的要求。文献[16]从不可观测度优化的角度出发,利用整数规划模型求解,在误差最大的节点装置 PMU,但没有考虑到配电网系统中节点较多而零注入节点较少的情况。启发式算法 的全局搜索能力强,适用于非线性、高维度的模型求解问题。本文基于二进制粒子群优化 (BPSO) 求解最佳 PMU优化配置研究。

📚2 运行结果

image.gif

主函数代码:

clc

clear

close all

format shortG

commandwindow;

%% parameters setting

nvar=30;   % number of variable

lb=0*ones(1,nvar); % lower bound

ub=1*ones(1,nvar);  % upper bound

popsize=1000; % population size

maxiter=1000; % max of iteation

c1=1;

c2=1;

damp=1;

%% initial population algorithm

tic

emp.var=[];

emp.fit=[];

emp.vel=[];

par=repmat(emp,popsize,1);

for i=1:popsize

   

   par(i).vel=lb+rand(1,nvar).*(ub-lb);

   R=rand(1,nvar);

   par(i).var=R>(1./(1+exp(-par(i).vel)));

   par(i).fit=IEEE_30_Bus(par(i).var);

 

end  

bpar=par;

[value,index]=min([par.fit]);

gpar=par(index);

   

%% main loop algorithm

BEST=zeros(maxiter,1);

for iter=1:maxiter

    for i=1:popsize

        par(i).vel=par(i).vel-...

                   c1*rand(1,nvar).*(bpar(i).var-par(i).var)-...

                   c2*rand(1,nvar).*(gpar.var-par(i).var);

       

       par(i).vel=par(i).vel*damp;        

       

       

       par(i).vel=min(par(i).vel,ub);

       par(i).vel=max(par(i).vel,lb);

       

       

       R=rand(1,nvar);

 

       par(i).var=R>(1./(1+exp(-par(i).vel)));

       

       

       par(i).fit=IEEE_30_Bus(par(i).var);

       

       

       if par(i).fit<bpar(i).fit

           bpar(i)=par(i);

           

           if bpar(i).fit<gpar.fit

               gpar=bpar(i);

           end

       end

    end

BEST(iter)=gpar.fit;

disp([ ' Iter = '  num2str(iter)  ' BEST = '  num2str(BEST(iter)) ])

end

%% results algorithm

disp([ ' Best Solution = ' num2str(find(gpar.var==1))]);

disp([ ' Best Fitness = ' num2str(gpar.fit)]);

disp([ ' Time = ' num2str(toc)]);

figure(1);

plot(BEST,'r');

xlabel('Iteration ');

ylabel(' Numbers of PMUs ');

legend('BEST');

title('BPSO');

gtext([' Best Solution =  ' num2str(find(gpar.var==1))   '   Best Fitness = ' num2str(gpar.fit) ] );

image.gif

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]曹鹏,刘敏,杭鲁庆.基于改进磷虾群算法的配电网PMU优化配置研究[J].电网与清洁能源,2022,38(04):61-67.

🌈4 Matlab代码实现

https://ttaozhi.com/t/p.html?id=oel9l3Ef8J

相关文章
|
2月前
|
缓存 算法 物联网
基于AODV和leach协议的自组网络平台matlab仿真,对比吞吐量,负荷,丢包率,剩余节点个数,节点消耗能量
本系统基于MATLAB 2017b,对AODV与LEACH自组网进行了升级仿真,新增运动节点路由测试,修正丢包率统计。AODV是一种按需路由协议,结合DSDV和DSR,支持动态路由。程序包含参数设置、消息收发等功能模块,通过GUI界面配置节点数量、仿真时间和路由协议等参数,并计算网络性能指标。 该代码实现了节点能量管理、簇头选举、路由发现等功能,并统计了网络性能指标。
160 73
|
1月前
|
安全 调度
电力系统的负荷损失和潮流计算matlab仿真,对比最高度数,最高介数以及最高关键度等节点攻击
本课题研究节点攻击对电力系统稳定性的影响,通过模拟最高度数、最高介数和最高关键度攻击,对比不同攻击方式下的停电规模。采用MATLAB 2022a 进行系统仿真,核心程序实现线路断开、潮流计算及优化。研究表明,节点攻击会导致负荷损失和系统瘫痪,对电力系统的安全构成严重威胁。通过分析负荷损失率和潮流计算,提出减少负荷损失的方法,以提升电力系统的稳定性和安全性。
|
1月前
|
传感器 算法 C语言
基于无线传感器网络的节点分簇算法matlab仿真
该程序对传感器网络进行分簇,考虑节点能量状态、拓扑位置及孤立节点等因素。相较于LEACH算法,本程序评估网络持续时间、节点死亡趋势及能量消耗。使用MATLAB 2022a版本运行,展示了节点能量管理优化及网络生命周期延长的效果。通过簇头管理和数据融合,实现了能量高效和网络可扩展性。
|
4月前
|
传感器 机器学习/深度学习 算法
基于GA遗传算法的WSN网络节点覆盖优化matlab仿真
本研究应用遗传优化算法于无线传感器网络(WSN),优化节点布局与数量,以最小化节点使用而最大化网络覆盖率。MATLAB2022a环境下,算法通过选择、交叉与变异操作,逐步改进节点配置,最终输出收敛曲线展现覆盖率、节点数及适应度值变化。无线传感器网络覆盖优化问题通过数学建模,结合遗传算法,实现目标区域有效覆盖与网络寿命延长。算法设计中,采用二进制编码表示节点状态,适应度函数考量覆盖率与连通性,通过选择、交叉和变异策略迭代优化,直至满足终止条件。
|
4月前
|
传感器 算法
基于LEACH路由协议的网络性能matlab仿真,包括数据量,能耗,存活节点
- **LEACH协议**在WSN中通过分簇减少能耗,普通节点向最近簇头发送数据,簇头融合后发送给基站。本项目研究LEACH在不同初始能量、数据包及控制包长度条件下的网络性能,如剩余节点、能量、接收数据量和累计接收量。
|
6月前
|
数据可视化 算法
MATLAB Simulink 交交变流电路性能研究
MATLAB Simulink 交交变流电路性能研究
75 2
|
6月前
|
数据可视化 算法
MATLAB Simulink 直流斩波电路性能研究
MATLAB Simulink 直流斩波电路性能研究
79 1
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
174 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
122 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
86 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码

热门文章

最新文章