基于遗传优化的Sugeno型模糊控制器设计matlab仿真

简介: 本课题基于遗传优化的Sugeno型模糊控制器设计,利用MATLAB2022a进行仿真。通过遗传算法优化模糊控制器的隶属函数参数,提升控制效果。系统原理结合了模糊逻辑与进化计算,旨在增强系统的稳定性、响应速度和鲁棒性。核心程序实现了遗传算法的选择、交叉、变异等步骤,优化Sugeno型模糊系统的参数,适用于工业控制领域。

1.课题概述
基于遗传优化的Sugeno型模糊控制器设计matlab仿真,通过遗传优化算法优化模糊控制器的隶属函数参数,从而获得较优的控制效果。

2.系统仿真结果

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg
7.jpeg

3.核心程序与模型
版本:MATLAB2022a

```MAXGEN = 15;
NIND = 10;
Nums = 1;
Chrom =crtbp(NIND,Nums*10);

%sh
Areas = [];

Areas = [Areas,[42.73-30;42.73+30]];
FieldD = [rep([10],[1,Nums]);Areas;rep([0;0;0;0],[1,Nums])];

gen = 0;
Js = 0.5*rand(NIND,1);
Objv = (Js+eps);
gen = 0;

while gen < MAXGEN

  Pe0 = 0.995;
  pe1 = 0.005; 

FitnV=ranking(Objv);
Selch=select('sus',Chrom,FitnV);
Selch=recombin('xovsp', Selch,Pe0);
Selch=mut( Selch,pe1);
phen1=bs2rv(Selch,FieldD);

  for jj=1:1:NIND
      [gen,jj]
      X           = phen1(jj,:);
      %计算对应的目标值
      [FIS2]      = func_obj(X);
      sim("pidfuzzy2")% Simulink模型"tops"。
      load O2.mat

dat = ans.Data;
len = length(dat);
E = std(dat(len/2:len));
JJ(jj,1) = E;
end

Objvsel=(JJ);
[Chrom,Objv]=reins(Chrom,Selch,1,1,Objv,Objvsel);
gen=gen+1;

  Error2(gen) = mean(JJ);

end
Error2=smooth(Error2,4);
figure
plot(Error2,'linewidth',2);
grid on
xlabel('迭代次数');
ylabel('遗传算法优化过程');
legend('Average fitness');
.........................................................................
% 将规则列表添加到模糊系统'a'中
Fiss = addrule(a,ruleList);

% 绘制第一个输入变量'E'的隶属度函数图
figure;
plotmf(Fiss,'input',1);

% 绘制第二个输入变量'CE'的隶属度函数图
figure;
plotmf(Fiss,'input',2);

% 绘制模糊系统的表面图,展示输入到输出的映射关系
figure;
gensurf(Fiss);

sim("pidfuzzy2")

save y3GA.mat Error2 X Fiss
61

```

4.系统原理简介
基于遗传算法的Sugeno型模糊控制器设计是一种结合模糊逻辑系统与进化计算技术的智能控制方法。这种设计方式旨在通过遗传算法(Genetic Algorithm, GA)来优化Sugeno型模糊系统的参数,从而提升控制系统的性能,如稳定性、响应速度及鲁棒性。Sugeno型模糊控制器以其规则清晰、易于理解和实现的优点,在工业控制领域有着广泛的应用。

   遗传算法是一种模拟自然选择和遗传机制的全局优化算法,用于在解空间中搜索最优解。其基本流程包括选择、交叉(杂交)、变异和精英保留等步骤。

68d58f4f33f85cc50cb7ecdf1601360e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

Sugeno型模糊系统,也称为TSK(Takagi-Sugeno-Kang)模型,由输入模糊化、规则库、模糊推理和输出解模糊化四部分组成。其规则形式为:

90d503bc44e119018fc1507ab0a9e87f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

相关文章
|
2月前
|
存储 传感器 分布式计算
针对大尺度L1范数优化问题的MATLAB工具箱推荐与实现
针对大尺度L1范数优化问题的MATLAB工具箱推荐与实现
|
2月前
|
机器学习/深度学习 供应链 算法
【电动车】基于削峰填谷的电动汽车多目标优化调度策略研究(Matlab代码实现)
【电动车】基于削峰填谷的电动汽车多目标优化调度策略研究(Matlab代码实现)
119 0
|
2月前
|
机器学习/深度学习 算法 新能源
基于动态非合作博弈的大规模电动汽车实时优化调度电动汽车决策研究(Matlab代码实现)
基于动态非合作博弈的大规模电动汽车实时优化调度电动汽车决策研究(Matlab代码实现)
|
2月前
|
机器学习/深度学习 存储 人工智能
基于双层共识控制的直流微电网优化调度(Matlab代码实现)
基于双层共识控制的直流微电网优化调度(Matlab代码实现)
120 0
|
2月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
151 0
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
258 0
|
2月前
|
算法 定位技术 计算机视觉
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
127 0
|
2月前
|
算法 机器人 计算机视觉
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
110 0
|
2月前
|
新能源 Java Go
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
126 0
|
2月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
174 8

热门文章

最新文章