【电力系统经济调度】多元宇宙算法求解电力系统多目标优化问题(Matlab实现)【电气期刊论文复现】

本文涉及的产品
网络型负载均衡 NLB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介: 【电力系统经济调度】多元宇宙算法求解电力系统多目标优化问题(Matlab实现)【电气期刊论文复现】

 目录

0 概述

1 环境经济调度数学模型

2 多元宇宙算法

3 运行结果

4 Matlab代码实现


image.gif

目录

0 概述

1 环境经济调度数学模型

2 多元宇宙算法

3 Matlab代码实现

3.1 主函数:

3.2 目标函数

4 运行结果

image.gif

0 概述

多元宇宙算法求解电力系统多目标优化算法有很好的效果,代码换成自己的目标函数,加上约束和惩罚项等。本文用多元宇宙算法求解电力系统多目标优化问题——电力系统环境经济调度问题。

image.gif

image.gif

提出了一种求解电力系统环境经济调度的新方法,该方法利用宇宙空间在随机创建过程中高膨胀率的物体随虫洞在空间移动物体的规律,通过对白洞和黑洞间随机传送物体来实现最优搜索. 算法具有运算速度快,收敛性强,适用于高维计算等特点.以总燃料费用最低和总污染排放最少为多目标建立环境经济调度模型,最后,通过发电厂传统10机组和40机组算例进行仿真.结果表明:本文所提算法具有经济性和有效性.

1 环境经济调度数学模型

image.gif

image.gif

2 多元宇宙算法

image.gif

image.gifimage.gif

3 运行结果

10机组运行结果:

image.gif

image.gif

image.gif

image.gif

本文提出了一种求解电力系统环境经济调度的新方法,计及阀点效应和污染排放因素,建立多目标规划模型,利用PPF定价原则权衡多重因素. 多元宇宙算法在求解EED问题时具有计算精度高,收敛速度快等特点,在求解高维度问题表现更佳,适用于其他工程问题研究.

🎉作者研究:🏅🏅🏅主要研究方向是电力系统和智能算法、机器学习和深度学习。目前熟悉python网页爬虫、机器学习、群智能算法、深度学习的相关内容。希望将计算机和电网有效结合!⭐️⭐️⭐️

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者,博主专门做了一个专栏目录,整个专栏只放了一篇文章,足见我对其重视程度,做到极度细致,方便大家进行学习!亲民!!!还有我开了一个专栏给女朋友的,很浪漫的喔,有问题可以私密博主,博主看到会在第一时间回复。

📝目前更新:🌟🌟🌟电力系统相关知识,期刊论文,算法,机器学习和人工智能学习。

🚀支持:🎁🎁🎁如果觉得博主的文章还不错或者您用得到的话,可以关注一下博主,如果三连收藏支持就更好啦!这就是给予我最大的支持!

                                                           

👨‍🎓博主课外兴趣:中西方哲学,送予读者:

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“真理”上的尘埃吧。

    或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

4 Matlab代码实现

完整代码:https://mbd.pub/o/bread/YpuWmJxr

image.gif

clc;
clear;
close all;
tStart=tic;
% global costdata emissiondata B B0 B00 Pd VarMin VarMax nVar
global data B B0 B00 Pd VarMin VarMax nVar
Pd=2000;
data=xlsread('IEEE10.xls');
B1=xlsread('B10.xls');
B=B1(1:10,1:10);
B0=[0 0 0 0 0 0 0 0 0 0];
B00=0;
%  B=B1(1:3,1:3);
%  B0=[0 0 0 0 0 0 0 0 0 0];
%  B00=0;
%%
Max_time=600; %迭代次数
N=100;
ArchiveMaxSize=100;
% max_iter=Max_time;
 nVar=10;             % 机组个数
VarSize=[1 nVar];   % 决策变量矩阵的大小
VarMin=data(:,2);          %机组出力下限
VarMax= data(:,3);          % 机组出力上限
fobj=@(x) IEEE3aobj(x);
dim=nVar;
lb=VarMin';
ub=VarMax';
obj_no=2;
Best_universe=zeros(1,dim);
Best_universe_Inflation_rate=inf*ones(1,obj_no);
Archive_X=zeros(ArchiveMaxSize,dim);
Archive_F=ones(ArchiveMaxSize,obj_no)*inf;
Archive_member_no=0;
WEP_Max=1;
WEP_Min=0.2;
for i=1:N
   Universes(i,:)=lcheck3; 
end
Time=1;
while Time<Max_time+1
    WEP=WEP_Min+Time*((WEP_Max-WEP_Min)/Max_time);
    TDR=1-((Time)^(1/6)/(Max_time)^(1/6));
    for i=1:size(Universes,1)
        %边界检查(如果宇宙超出边界,则将它们带回搜索空间内)
        Flag4ub=Universes(i,:)>ub;
        Flag4lb=Universes(i,:)<lb;
        Universes(i,:)=(Universes(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;
        Universes(i,:)=lbcoff3bus(Universes(i,:));
        %计算宇宙的通货膨胀率(适合度)
        Inflation_rates(i,:)=fobj(Universes(i,:));
        %精英主义
        if dominates(Inflation_rates(i,:),Best_universe_Inflation_rate)
            Best_universe_Inflation_rate=Inflation_rates(i,:);
            Best_universe=Universes(i,:);
        end
    end
    [sorted_Inflation_rates,sorted_indexes]=sort(Inflation_rates);
    for newindex=1:N
        Sorted_universes(newindex,:)=Universes(sorted_indexes(newindex),:);
    end
    %原始MVO论文中的标准化通货膨胀率
    normalized_sorted_Inflation_rates=normr(sorted_Inflation_rates);
    Universes(1,:)= Sorted_universes(1,:);
%     Universes(1,:)=lchecktf1(Universes(1,:));
    [Archive_X, Archive_F, Archive_member_no]=UpdateArchive(Archive_X, Archive_F, Universes, Inflation_rates, Archive_member_no);
    if Archive_member_no>ArchiveMaxSize
        Archive_mem_ranks=RankingProcess(Archive_F, ArchiveMaxSize, obj_no);
        [Archive_X, Archive_F, Archive_mem_ranks, Archive_member_no]=HandleFullArchive(Archive_X, Archive_F, Archive_member_no, Archive_mem_ranks, ArchiveMaxSize);
    else
        Archive_mem_ranks=RankingProcess(Archive_F, ArchiveMaxSize, obj_no);
    end
    Archive_mem_ranks=RankingProcess(Archive_F, ArchiveMaxSize, obj_no);
    % 提高复盖率
    index=RouletteWheelSelection(1./Archive_mem_ranks);
    if index==-1
        index=1;
    end
   Best_universe_Inflation_rate=Archive_F(index,:);
   Best_universe=Archive_X(index,:); 
    %更新宇宙的位置
    for i=2:size(Universes,1)%从2开始,因为第1位是精英
        Back_hole_index=i;
        for j=1:size(Universes,2)
            r1=rand();
            if r1<normalized_sorted_Inflation_rates(i)
                White_hole_index=RouletteWheelSelection(-sorted_Inflation_rates);% 对于最大化问题,排序的通货膨胀率应该写成排序的通货膨胀率
                if White_hole_index==-1
                    White_hole_index=1;
                end
                %Eq. (3.1) 
                Universes(Back_hole_index,j)=Sorted_universes(White_hole_index,j);
%                 Universes(Back_hole_index,j)=lchecktf1(Universes(Back_hole_index,j));
            end
            if (size(lb',1)==1)
                %如果边界都是一样的,那么原MVO论文中的公式(3.2)就会出现
                r2=rand();
                if r2<WEP
                    r3=rand();
                    if r3<0.5
                        Universes(i,j)=Best_universe(1,j)+TDR*((ub-lb)*rand+lb);
                    end
                    if r3>0.5
                        Universes(i,j)=Best_universe(1,j)-TDR*((ub-lb)*rand+lb);
                    end
                end
            end
            if (size(lb',1)~=1)
            %公式( 3.2 )在原始MVO论文中,如果对每个变量的上下界不同
                r2=rand();
                if r2<WEP
                    r3=rand();
                    if r3<0.5
                        Universes(i,j)=Best_universe(1,j)+TDR*((ub(j)-lb(j))*rand+lb(j));
                    end
                    if r3>0.5
                        Universes(i,j)=Best_universe(1,j)-TDR*((ub(j)-lb(j))*rand+lb(j));
                    end
                end
            end
        end
        Universes(i,:)=lbcoff3bus(Universes(i,:));
    end
    display(['At the iteration ', num2str(Time), ' there are ', num2str(Archive_member_no), ' non-dominated solutions in the archive']);
    Time=Time+1;
%
end
plot(Archive_F(:,1),Archive_F(:,2),'Ro','LineWidth',2,...
        'MarkerEdgeColor','r',...
        'MarkerFaceColor','r',...
        'MarkerSize',2);
xlabel('污染排放量')
ylabel('煤耗量')
title('Pareto最前沿')
% Universes
Archive_F(:,1)
Archive_F(:,2)
Best_universe

image.gif


相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
5天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
148 68
|
1月前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
1月前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。

热门文章

最新文章