大学生人工智能挑战赛—智慧零售 从目标检测到算法落地

简介: 大学生人工智能挑战赛—智慧零售 从目标检测到算法落地

首先下载数据集,提取码 wwsj


查看数据集给出的是json格式,训练集和测试集有标注(共110张),其余还有无标注的需要自己手工标注。但是既然只是作业又不是去参加比赛,那就直接当小数据量样本训练.


image.png


image.png


构思


目前数据量较小,而且很明显是一个目标检测任务,并且涉及到算法落地的问题,所以开始之前一定要理清思路,想清楚每一步应该怎么做.


  • 找到一个合适的目标检测模型,基于这个小样本数据集进行训练,得到一个效果较好的模型
  • 将python训练得到的模型进行转换,转为onnx以及tensorRT等形式,方便后续算法落地
  • 有了转换后的模型,进行c++改写模型加载以及检测部分代码

既然是快速实现一次作业,那必然要“站在巨人的肩膀上”,所以使用的大部分都是网上的开源代码.


开始动手


1.数据集准备


从网盘下载数据,因为数据量很小,所以train和test全部拿来训练,一共110张图片.然后把数据集转为voc格式


#将所给的数据转为voc数据集格式
import os
import numpy as np
import codecs
import json
from glob import glob
import cv2
import shutil
from sklearn.model_selection import train_test_split
# 1.标签路径
labelme_path = "./2022 年(第 15 届)中国大学生计算机设计大赛人工智能挑战赛-智慧零售赛项数据集/TrainingDataset/"  # 使用labelme打的标签(包含每一张照片和对应json格式的标签)
saved_path = "./VOCdevkit/VOC2007/"  # 保存路径
# 2.voc格式的文件夹,如果没有,就创建一个
if not os.path.exists(saved_path + "Annotations"):
    os.makedirs(saved_path + "Annotations")
if not os.path.exists(saved_path + "JPEGImages/"):
    os.makedirs(saved_path + "JPEGImages/")
if not os.path.exists(saved_path + "ImageSets/Main/"):
    os.makedirs(saved_path + "ImageSets/Main/")
# 3.获取json文件
files = glob(labelme_path + "*.json")
files = [i.split("/")[-1].split(".json")[0] for i in files]  # 获取每一个json文件名
print(len(files))
# 4.读取每一张照片和对应标签,生成xml
for json_file_ in files:
    json_filename = labelme_path + json_file_ + ".json"
    json_file = json.load(open(json_filename, "r", encoding="utf-8"))
    height, width, channels = cv2.imread(labelme_path + json_file_ + ".png").shape
    with codecs.open(saved_path + "Annotations/" + json_file_ + ".xml", "w", "utf-8") as xml:
        xml.write('<annotation>\n')
        xml.write('\t<folder>' + 'UAV_data' + '</folder>\n')
        xml.write('\t<filename>' + json_file_ + ".png" + '</filename>\n')
        xml.write('\t<source>\n')
        xml.write('\t\t<database>The UAV autolanding</database>\n')
        xml.write('\t\t<annotation>UAV AutoLanding</annotation>\n')
        xml.write('\t\t<image>flickr</image>\n')
        xml.write('\t\t<flickrid>NULL</flickrid>\n')
        xml.write('\t</source>\n')
        xml.write('\t<owner>\n')
        xml.write('\t\t<flickrid>NULL</flickrid>\n')
        xml.write('\t\t<name>ChaojieZhu</name>\n')
        xml.write('\t</owner>\n')
        xml.write('\t<size>\n')
        xml.write('\t\t<width>' + str(width) + '</width>\n')
        xml.write('\t\t<height>' + str(height) + '</height>\n')
        xml.write('\t\t<depth>' + str(channels) + '</depth>\n')
        xml.write('\t</size>\n')
        xml.write('\t\t<segmented>0</segmented>\n')
        for multi in json_file["labels"]:
            #print(len(multi))
            xmin=multi['x1']
            xmax=multi['x2']
            ymin=multi['y1']
            ymax=multi['y2']
            label = multi["name"]
            xml.write('\t<object>\n')
            xml.write('\t\t<name>' + label + '</name>\n')
            xml.write('\t\t<pose>Unspecified</pose>\n')
            xml.write('\t\t<truncated>1</truncated>\n')
            xml.write('\t\t<difficult>0</difficult>\n')
            xml.write('\t\t<bndbox>\n')
            xml.write('\t\t\t<xmin>' + str(xmin) + '</xmin>\n')
            xml.write('\t\t\t<ymin>' + str(ymin) + '</ymin>\n')
            xml.write('\t\t\t<xmax>' + str(xmax) + '</xmax>\n')
            xml.write('\t\t\t<ymax>' + str(ymax) + '</ymax>\n')
            xml.write('\t\t</bndbox>\n')
            xml.write('\t</object>\n')
            print(json_filename, xmin, ymin, xmax, ymax, label)
        xml.write('</annotation>')
# 5.复制图片到 VOC2007/JPEGImages/下
image_files = glob(labelme_path + "*.png")
print("copy image files to VOC007/JPEGImages/")
for image in image_files:
    shutil.copy(image, saved_path + "JPEGImages/")
# 6.划分train,test,val格式数据集
txtsavepath = saved_path + "ImageSets/Main/"
ftrainval = open(txtsavepath + '/trainval.txt', 'w')
ftest = open(txtsavepath + '/test.txt', 'w')
ftrain = open(txtsavepath + '/train.txt', 'w')
fval = open(txtsavepath + '/val.txt', 'w')
total_files = glob("./VOCdevkit/VOC2007/Annotations/*.xml")
total_files = [i.split("/")[-1].split(".xml")[0] for i in total_files]
# test_filepath = "/Users/ysj/Desktop/2022 年(第 15 届)中国大学生计算机设计大赛人工智能挑战赛-智慧零售赛项数据集/TestDataset/"
for file in total_files:
    ftrainval.write(file + "\n")
# test
# for file in os.listdir(test_filepath):
#    ftest.write(file.split(".png")[0] + "\n")
# split,根据test_size这个参数来确定test的数量
train_files, val_files = train_test_split(total_files, test_size=0.001, random_state=42)
# train
for file in train_files:
    ftrain.write(file + "\n")
    #ftest.write(file + "\n")
# val
for file in val_files:
    fval.write(file + "\n")
ftrainval.close()
ftrain.close()
fval.close()
#ftest.close()
复制代码


得到的数据集如下


image.png

2. 训练模型


准备好了数据集,接着就得找一个好的模型进行训练.为了后面的部署方便,我这里选择的是YOLOX.其他大多数模型在后面转ONNX格式的时候会算子不兼容或者其他问题无法转换.为了简单起见所以直接选择YOLOX而且代码中就自带有转ONNX和TRT部分的代码.

把YOLOX克隆之后改一下里面对应的类别数,类别名称,把刚才准备好的数据复制到datasets里面.下载一个yolox_s的预训练模型,然后开始train(为了节约,直接半精度训练) 默认训练最多300epoch,想更改可以去yolox_base.py里面改max_epoch.训练耗时并不久,很快就得到了一个训练集上表现良好的模型.

image.png

然后验证一下模型效果


python tools/eval.py -f ../exps/example/yolox_voc/yolox_voc_s.py -c ../YOLOX_outputs/yolox_voc_s/best_ckpt.pth -b 8 -d 0 --conf 0.001 --fp16

image.pngimage.png

使用模型预测一下图片

image.png

opencv不支持中文显示,一般都需要引入其他字符库或者改写PutText,当然还可以尝试用PIL的ImageDraw来绘制图片,也相当于改写绘制函数.这里我直接全部写成拼音图简单

image.png


3. 转换模型格式


我们目前得到的是pytorch生成的pth,我们目标是onnx和trt.使用export_onnx.py我们可以得到onnx文件.因为有onnxsim,所以转换后的模型是优化过的,大小会比pth小很多.

trt.py可以得到trt的.engine文件,但是如果想要trt文件.这个时候使用tensorRT的trtexec可以将onnx转为trt文件trtexec --onnx='xxx.onnx' --saveEngine='xxx.trt' --workspace=xxx --fp16


4. 使用tensorRT改写


这部分可以参考yolox中demo/TensorRT下的cpp进行仿写,也可以根据TensorRT自带的一些example来改写,还有一些网上开源的代码也可以参考.如果想快速实现,可以参考一下这个gitee.com/xiaoyuerCV/…

里面的CMakeLists根据自己的路径引入库和链接,然后它的代码里有一个小地方需要自己加上,这个应该是最近TensorRT更新过所以继承的时候要添加,如下图

image.png

其他地方基本不用动,改改自己的类别以及一些参数就行.然后一些功能根据自己需要添加,比如我想得到每张图里商品的名称,置信度以及总价格

image.png

效果

image.png


image.png

目前还是输入图片路径进行检测,后期可以改写成用Capture捕获摄像头进行检测,当然也可以用python搭建简单的api直接tensorrt调用模型作预测.总之只要模型有了,后面的可玩性还是很强的.而且不得不说旷视确实牛皮,yolox训练快效果好,之前也试过其他模型对于这批数据效果并不理想.

目录
相关文章
|
11天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
33 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
20天前
|
机器学习/深度学习 人工智能 算法
"拥抱AI规模化浪潮:从数据到算法,解锁未来无限可能,你准备好迎接这场技术革命了吗?"
【10月更文挑战第14天】本文探讨了AI规模化的重要性和挑战,涵盖数据、算法、算力和应用场景等方面。通过使用Python和TensorFlow的示例代码,展示了如何训练并应用一个基本的AI模型进行图像分类,强调了AI规模化在各行业的广泛应用前景。
26 5
|
20天前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-19
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-19
43 2
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-16
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-16
24 1
|
20天前
|
机器学习/深度学习 人工智能 算法
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-15
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-15
43 1
|
6天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
11天前
|
存储 JSON 算法
TDengine 检测数据最佳压缩算法工具,助你一键找出最优压缩方案
在使用 TDengine 存储时序数据时,压缩数据以节省磁盘空间是至关重要的。TDengine 支持用户根据自身数据特性灵活指定压缩算法,从而实现更高效的存储。然而,如何选择最合适的压缩算法,才能最大限度地降低存储开销?为了解决这一问题,我们特别推出了一个实用工具,帮助用户快速判断并选择最适合其数据特征的压缩算法。
22 0
|
20天前
|
存储 人工智能 算法
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-18
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-18
33 0
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-17
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-17
54 0