最佳实践—如何优化Batch Insert

简介: Batch Insert语句是常见的数据库写入数据的方式,PolarDB-X兼容MySQL协议和语法,Batch Insert语法为:
INSERT [IGNORE] [INTO] table_name(column_name, ...) VALUES (value1, ...), (value2, ...), ...;

影响Batch Insert性能的主要因素包括:

  1. batch size
  2. 并行度
  3. 分片数目
  4. 列数目
  5. GSI的数目
  6. sequence数目

对于分片数目、列数目、GSI数目、sequence数目等内需因素,根据实际需求进行设置,并且常常会和读性能相互影响,例如GSI数目较多情况下,写入性能肯定会下降,但是对读性能有提升。本文不详细讨论这些因素的影响,主要聚焦于batch size和并行度的合理设置。

测试环境

本文档的测试环境见下表:

环境 参数
PolarDB-X版本 polarx-kernel_5.4.11-16279028_xcluster-20210802
节点规格 16核64GB
节点个数 4

测试的表用例:


CREATE TABLE `sbtest1` (

`id` int(11) NOT NULL,
`k` int(11) NOT NULL DEFAULT '0',
`c` char(120) NOT NULL DEFAULT '',
`pad` char(60) NOT NULL DEFAULT '',
PRIMARY KEY (`id`),
KEY `k_1` (`k`)
) ENGINE = InnoDB DEFAULT CHARSET = utf8mb4;

Batch特性:BATCH_INSERT_POLICY=SPLIT

PolarDB-X针对数据批量写入,为保障更好的并发性,对Batch Insert进行了优化,当单个Batch Insert语句大小超过256K时,PolarDB-X会将Batch Insert语句动态拆分成多个小Batch,多个小Batch之间串行执行,这个特性称为SPLIT。

通过BATCH_INSERT_POLICY=SPLIT的机制,在保障最佳性能的同时,减少PolarDB-X并行执行Batch Insert的代价,尽可能规避分布式下多节点的负载不均衡。

相关参数:

  1. BATCH_INSERT_POLICY,可选SPLIT/NONE,默认值为SPLIT,代表默认启用动态拆分Batch。
  2. MAX_BATCH_INSERT_SQL_LENGTH,默认值256,单位KB。代表触发动态拆分Batch的SQL长度阈值为256K。
  3. BATCH_INSERT_CHUNK_SIZE_DEFAULT,默认值200。代表触发动态拆分Batch时,每个拆分之后的小Batch的批次大小。

关闭BATCH_INSERT_POLICY=SPLIT机制,可通过如下hint语句/+TDDL:CMD_EXTRA(BATCH_INSERT_POLICY=NONE)/ 。 此参数的目标是关闭BATCH_INSERT_POLICY策略,这样才可以保证batch size在PolarDB-X执行时不做自动拆分,可用于验证batch size为2000、5000、10000下的性能,从测试的结果来看batch size超过1000以后提升并不明显。

单表的性能基准

在分布式场景下单表只会在一个主机上,其性能可以作为一个基础的性能基线,用于评测分区表的水平扩展的能力,分区表会将数据均匀分布到多台主机上。

测试方法为对PolarDB-X中的单表进行Batch Insert操作,单表的数据只会存在一个数据存储节点中,PolarDB-X会根据表定义将数据写入到对应的数据存储节点上。

场景一:batch size

参数配置:

  • 并行度:16
  • 列:4
  • gsi:无
  • sequence:无
测试项 batch size 1 10 100 500 1000 2000 5000 10000
PolarDB-X【单表】 性能(行每秒) 5397 45653 153216 211976 210644 215103 221919 220529

场景二:并行度

参数配置:

  • batch size:1000
  • 列:4
  • gsi:无
  • sequence:无
测试项 thread 1 2 4 8 16 32 64 128
PolarDB-X【单表】 性能(行每秒) 22625 41326 76052 127646 210644 223431 190138 160858

测试总结

对于单表的测试,推荐batch size为1000,并行度为16~32时整体性能比较好。在测试batch size为2000、5000、10000时,需要添加hint参数来关闭SPLIT特性,从测试的结果来看batch size超过1000以后提升并不明显。示例:


/+TDDL:CMD_EXTRA(BATCH_INSERT_POLICY=NONE)/

分区表的性能基准

Batch size和并行度都会影响Batch Insert的性能,下面对这两个因素分开进行测试分析。

场景一:batch Size

在数据分片的情况下,由于包含拆分函数,Batch Insert语句会经过拆分函数分离values,下推到物理存储上的batch size会改变,示意图如下图所示。113.png

INSERT [IGNORE] [INTO] table_name(column_name, ...) VALUES (value1, ...), (value2, ...), ...;

影响Batch Insert性能的主要因素包括:

  1. batch size
  2. 并行度
  3. 分片数目
  4. 列数目
  5. GSI的数目
  6. sequence数目

对于分片数目、列数目、GSI数目、sequence数目等内需因素,根据实际需求进行设置,并且常常会和读性能相互影响,例如GSI数目较多情况下,写入性能肯定会下降,但是对读性能有提升。本文不详细讨论这些因素的影响,主要聚焦于batch size和并行度的合理设置。

测试环境

本文档的测试环境见下表:

环境 参数
PolarDB-X版本 polarx-kernel_5.4.11-16279028_xcluster-20210802
节点规格 16核64GB
节点个数 4

测试的表用例:


CREATE TABLE `sbtest1` (
`id` int(11) NOT NULL,
`k` int(11) NOT NULL DEFAULT '0',
`c` char(120) NOT NULL DEFAULT '',
`pad` char(60) NOT NULL DEFAULT '',
PRIMARY KEY (`id`),
KEY `k_1` (`k`)
) ENGINE = InnoDB DEFAULT CHARSET = utf8mb4;

Batch特性:BATCH_INSERT_POLICY=SPLIT

PolarDB-X针对数据批量写入,为保障更好的并发性,对Batch Insert进行了优化,当单个Batch Insert语句大小超过256K时,PolarDB-X会将Batch Insert语句动态拆分成多个小Batch,多个小Batch之间串行执行,这个特性称为SPLIT。

通过BATCH_INSERT_POLICY=SPLIT的机制,在保障最佳性能的同时,减少PolarDB-X并行执行Batch Insert的代价,尽可能规避分布式下多节点的负载不均衡。

相关参数:

  1. BATCH_INSERT_POLICY,可选SPLIT/NONE,默认值为SPLIT,代表默认启用动态拆分Batch。
  2. MAX_BATCH_INSERT_SQL_LENGTH,默认值256,单位KB。代表触发动态拆分Batch的SQL长度阈值为256K。
  3. BATCH_INSERT_CHUNK_SIZE_DEFAULT,默认值200。代表触发动态拆分Batch时,每个拆分之后的小Batch的批次大小。

关闭BATCH_INSERT_POLICY=SPLIT机制,可通过如下hint语句/+TDDL:CMD_EXTRA(BATCH_INSERT_POLICY=NONE)/ 。 此参数的目标是关闭BATCH_INSERT_POLICY策略,这样才可以保证batch size在PolarDB-X执行时不做自动拆分,可用于验证batch size为2000、5000、10000下的性能,从测试的结果来看batch size超过1000以后提升并不明显。

单表的性能基准

在分布式场景下单表只会在一个主机上,其性能可以作为一个基础的性能基线,用于评测分区表的水平扩展的能力,分区表会将数据均匀分布到多台主机上。

测试方法为对PolarDB-X中的单表进行Batch Insert操作,单表的数据只会存在一个数据存储节点中,PolarDB-X会根据表定义将数据写入到对应的数据存储节点上。

场景一:batch size

参数配置:

  • 并行度:16
  • 列:4
  • gsi:无
  • sequence:无
测试项 batch size 1 10 100 500 1000 2000 5000 10000
PolarDB-X【单表】 性能(行每秒) 5397 45653 153216 211976 210644 215103 221919 220529

场景二:并行度

参数配置:

  • batch size:1000
  • 列:4
  • gsi:无
  • sequence:无
测试项 thread 1 2 4 8 16 32 64 128
PolarDB-X【单表】 性能(行每秒) 22625 41326 76052 127646 210644 223431 190138 160858

测试总结

对于单表的测试,推荐batch size为1000,并行度为16~32时整体性能比较好。在测试batch size为2000、5000、10000时,需要添加hint参数来关闭SPLIT特性,从测试的结果来看batch size超过1000以后提升并不明显。示例:


/+TDDL:CMD_EXTRA(BATCH_INSERT_POLICY=NONE)/

分区表的性能基准

Batch size和并行度都会影响Batch Insert的性能,下面对这两个因素分开进行测试分析。

场景一:batch Size

在数据分片的情况下,由于包含拆分函数,Batch Insert语句会经过拆分函数分离values,下推到物理存储上的batch size会改变,示意图如下图所示。

相关文章
|
安全 图形学 Windows
CorelDRAW2023最新汉化版和谐补丁安装教程
CorelDRAW X8版本是具备创意的图形设计程序!可在 CorelDRAW Graphics Suite 公认的工具以及其他更多功能。可以直接体验我们惊人的全新 LiveSketch™ 工具,在创意迸发时即时捕捉灵感,而无需素描或从纸上扫描。我们的套件配备先进的功能,可帮助您轻松自信地创作优美设计、图形、照片。X8功能齐全的图形、版面和照片编辑工具新功能、字体管理、支持 Windows 10 和 4K 显示屏!CorelDRAW2023下载如下:http://t.csdn.cn/1QF3M
1478 0
|
存储 前端开发 JavaScript
纯前端实现腾讯cos文件上传功能
在前端开发中文件上传是经常会遇到的,并且多数情况会使用第三方平台来存储文件,腾讯云cos是我们常用的。本篇文章就是带我从前端的角度实现腾讯云COS存储。本文参考了腾讯云COS开发文档 JavaScript SDK
1541 0
|
11月前
|
JSON 监控 API
获取1688商品SKU信息API接口及实战应用
在电商蓬勃发展的今天,数据成为宝贵的财富。1688作为国内知名批发采购平台,提供商品SKU信息API接口,可获取库存、价格、规格等关键数据,助力电商运营、市场分析和价格监控。本文介绍如何注册1688开放平台账号、创建应用并获取AppKey/AppSecret,申请API权限,使用Python实现接口调用,处理响应数据,并注意请求频率限制和错误处理。通过该接口,可为电商运营和数据分析提供有力支持。
538 2
|
11月前
|
安全 搜索推荐 网络安全
HTTPS与HTTP:区别及安全性对比
HTTP和HTTPS是现代网络通信中的两种重要协议。HTTP为明文传输,简单但不安全;HTTPS基于HTTP并通过SSL/TLS加密,确保数据安全性和完整性,防止劫持和篡改。HTTPS还提供身份验证,保护用户隐私并防止中间人攻击。尽管HTTPS有额外的性能开销和配置成本,但在涉及敏感信息的场景中,如在线支付和用户登录,其安全性优势至关重要。搜索引擎也更青睐HTTPS网站,有助于提升SEO排名。综上,HTTPS已成为大多数网站的必然选择,以保障用户数据安全和合规性。
1074 1
|
存储 安全 网络协议
|
11月前
|
运维 安全 专有云
阿里云身份安全与密评合规实践分享
本次分享由阿里云智能集团高级安全产品专家易鑫和九州云腾安全产品专家杨念念主讲,聚焦云上密码服务助力企业密评合规及阿里ADAS在企业上云过程中的身份安全管理。
665 7
|
人工智能 自然语言处理 搜索推荐
谷歌 ai人工智能平台叫什么?请记住答案是:Gemini
Gemini 是 Google 开发的一个大型AI语言模型 ,代表着人工智能领域的一项重大进步。它是一个强大的工具,旨在理解和生成人类语言,并具备广泛的功能,可以帮助人们完成各种任务,从创作不同类型的文本到回答复杂的问题,再到翻译语言等等。
|
网络架构
合理设置 WLAN 频道以减少干扰
【8月更文挑战第24天】
519 0
|
前端开发 搜索推荐 JavaScript
未来十年,前端开发的变革与挑战
在未来十年,前端开发将面临着一系列的变革和挑战。随着移动设备的普及、人工智能技术的不断进步以及新型互联网应用的涌现,前端开发将以全新的方式应对日益增长的用户需求和技术要求。本文将探讨前端开发可能面临的变革,并提出应对挑战的策略。
|
机器学习/深度学习 人工智能 自然语言处理
AI案例研究与项目实战
探索AI实践:从智能客服到图像识别、推荐系统、语音助手,再到智能仓储和金融风控,这些案例展示AI如何解决实际问题。通过NLP、深度学习、机器学习等技术,企业如阿里巴巴、京东等改善客户服务,医疗、安防领域利用图像识别创新,而个性化推荐提升用户体验。AI不仅改变交互方式,还优化仓储物流、保障金融安全,实操项目助力技术应用能力提升。
1366 3