“12306” 是如何支撑百万 QPS 的?(二)

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
性能测试 PTS,5000VUM额度
简介: “12306” 是如何支撑百万 QPS 的?(二)
  • 4. 代码演示
  • 4.1 初始化工作
  • 4.2 本地扣库存和统一扣库存
  • 4.3 响应用户信息
  • 4.4 单机服务压测
  • 5.总结回顾

4. 代码演示

Go语言原生为并发设计,我采用go语言给大家演示一下单机抢票的具体流程。

4.1 初始化工作

go包中的init函数先于main函数执行,在这个阶段主要做一些准备性工作。我们系统需要做的准备工作有:初始化本地库存、初始化远程redis存储统一库存的hash键值、初始化redis连接池;另外还需要初始化一个大小为1的int类型chan,目的是实现分布式锁的功能,也可以直接使用读写锁或者使用redis等其他的方式避免资源竞争,但使用channel更加高效,这就是go语言的哲学:不要通过共享内存来通信,而要通过通信来共享内存 。redis库使用的是redigo,下面是代码实现:

...
//localSpike包结构体定义
package localSpike
type LocalSpike struct {
 LocalInStock     int64
 LocalSalesVolume int64
}
...
//remoteSpike对hash结构的定义和redis连接池
package remoteSpike
//远程订单存储健值
type RemoteSpikeKeys struct {
 SpikeOrderHashKey string //redis中秒杀订单hash结构key
 TotalInventoryKey string //hash结构中总订单库存key
 QuantityOfOrderKey string //hash结构中已有订单数量key
}
//初始化redis连接池
func NewPool() *redis.Pool {
 return &redis.Pool{
  MaxIdle:   10000,
  MaxActive: 12000, // max number of connections
  Dial: func() (redis.Conn, error) {
   c, err := redis.Dial("tcp", ":6379")
   if err != nil {
    panic(err.Error())
   }
   return c, err
  },
 }
}
...
func init() {
 localSpike = localSpike2.LocalSpike{
  LocalInStock:     150,
  LocalSalesVolume: 0,
 }
 remoteSpike = remoteSpike2.RemoteSpikeKeys{
  SpikeOrderHashKey:  "ticket_hash_key",
  TotalInventoryKey:  "ticket_total_nums",
  QuantityOfOrderKey: "ticket_sold_nums",
 }
 redisPool = remoteSpike2.NewPool()
 done = make(chan int, 1)
 done <- 1
}

4.2 本地扣库存和统一扣库存

本地扣库存逻辑非常简单,用户请求过来,添加销量,然后对比销量是否大于本地库存,返回bool值:

package localSpike
//本地扣库存,返回bool值
func (spike *LocalSpike) LocalDeductionStock() bool{
 spike.LocalSalesVolume = spike.LocalSalesVolume + 1
 return spike.LocalSalesVolume < spike.LocalInStock
}

注意这里对共享数据LocalSalesVolume的操作是要使用锁来实现的,但是因为本地扣库存和统一扣库存是一个原子性操作,所以在最上层使用channel来实现,这块后边会讲。统一扣库存操作redis,因为redis是单线程的,而我们要实现从中取数据,写数据并计算一些列步骤,我们要配合lua脚本打包命令,保证操作的原子性:

package remoteSpike
......
const LuaScript = `
        local ticket_key = KEYS[1]
        local ticket_total_key = ARGV[1]
        local ticket_sold_key = ARGV[2]
        local ticket_total_nums = tonumber(redis.call('HGET', ticket_key, ticket_total_key))
        local ticket_sold_nums = tonumber(redis.call('HGET', ticket_key, ticket_sold_key))
  -- 查看是否还有余票,增加订单数量,返回结果值
       if(ticket_total_nums >= ticket_sold_nums) then
            return redis.call('HINCRBY', ticket_key, ticket_sold_key, 1)
        end
        return 0
`
//远端统一扣库存
func (RemoteSpikeKeys *RemoteSpikeKeys) RemoteDeductionStock(conn redis.Conn) bool {
 lua := redis.NewScript(1, LuaScript)
 result, err := redis.Int(lua.Do(conn, RemoteSpikeKeys.SpikeOrderHashKey, RemoteSpikeKeys.TotalInventoryKey, RemoteSpikeKeys.QuantityOfOrderKey))
 if err != nil {
  return false
 }
 return result != 0
}

我们使用hash结构存储总库存和总销量的信息,用户请求过来时,判断总销量是否大于库存,然后返回相关的bool值。在启动服务之前,我们需要初始化redis的初始库存信息:

hmset ticket_hash_key "ticket_total_nums" 10000 "ticket_sold_nums" 0

4.3 响应用户信息

我们开启一个http服务,监听在一个端口上:

package main
...
func main() {
 http.HandleFunc("/buy/ticket", handleReq)
 http.ListenAndServe(":3005", nil)
}

上面我们做完了所有的初始化工作,接下来handleReq的逻辑非常清晰,判断是否抢票成功,返回给用户信息就可以了。

package main
//处理请求函数,根据请求将响应结果信息写入日志
func handleReq(w http.ResponseWriter, r *http.Request) {
 redisConn := redisPool.Get()
 LogMsg := ""
 <-done
 //全局读写锁
 if localSpike.LocalDeductionStock() && remoteSpike.RemoteDeductionStock(redisConn) {
  util.RespJson(w, 1,  "抢票成功", nil)
  LogMsg = LogMsg + "result:1,localSales:" + strconv.FormatInt(localSpike.LocalSalesVolume, 10)
 } else {
  util.RespJson(w, -1, "已售罄", nil)
  LogMsg = LogMsg + "result:0,localSales:" + strconv.FormatInt(localSpike.LocalSalesVolume, 10)
 }
 done <- 1
 //将抢票状态写入到log中
 writeLog(LogMsg, "./stat.log")
}
func writeLog(msg string, logPath string) {
 fd, _ := os.OpenFile(logPath, os.O_RDWR|os.O_CREATE|os.O_APPEND, 0644)
 defer fd.Close()
 content := strings.Join([]string{msg, "\r\n"}, "")
 buf := []byte(content)
 fd.Write(buf)
}

前边提到我们扣库存时要考虑竞态条件,我们这里是使用channel避免并发的读写,保证了请求的高效顺序执行。我们将接口的返回信息写入到了./stat.log文件方便做压测统计。

4.4 单机服务压测

开启服务,我们使用ab压测工具进行测试:

ab -n 10000 -c 100 http://127.0.0.1:3005/buy/ticket

下面是我本地低配mac的压测信息

This is ApacheBench, Version 2.3 <$Revision: 1826891 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Licensed to The Apache Software Foundation, http://www.apache.org/
Benchmarking 127.0.0.1 (be patient)
Completed 1000 requests
Completed 2000 requests
Completed 3000 requests
Completed 4000 requests
Completed 5000 requests
Completed 6000 requests
Completed 7000 requests
Completed 8000 requests
Completed 9000 requests
Completed 10000 requests
Finished 10000 requests
Server Software:
Server Hostname:        127.0.0.1
Server Port:            3005
Document Path:          /buy/ticket
Document Length:        29 bytes
Concurrency Level:      100
Time taken for tests:   2.339 seconds
Complete requests:      10000
Failed requests:        0
Total transferred:      1370000 bytes
HTML transferred:       290000 bytes
Requests per second:    4275.96 [#/sec] (mean)
Time per request:       23.387 [ms] (mean)
Time per request:       0.234 [ms] (mean, across all concurrent requests)
Transfer rate:          572.08 [Kbytes/sec] received
Connection Times (ms)
              min  mean[+/-sd] median   max
Connect:        0    8  14.7      6     223
Processing:     2   15  17.6     11     232
Waiting:        1   11  13.5      8     225
Total:          7   23  22.8     18     239
Percentage of the requests served within a certain time (ms)
  50%     18
  66%     24
  75%     26
  80%     28
  90%     33
  95%     39
  98%     45
  99%     54
 100%    239 (longest request)

根据指标显示,我单机每秒就能处理4000+的请求,正常服务器都是多核配置,处理1W+的请求根本没有问题。而且查看日志发现整个服务过程中,请求都很正常,流量均匀,redis也很正常:

//stat.log
...
result:1,localSales:145
result:1,localSales:146
result:1,localSales:147
result:1,localSales:148
result:1,localSales:149
result:1,localSales:150
result:0,localSales:151
result:0,localSales:152
result:0,localSales:153
result:0,localSales:154
result:0,localSales:156
...

5.总结回顾

总体来说,秒杀系统是非常复杂的。我们这里只是简单介绍模拟了一下单机如何优化到高性能,集群如何避免单点故障,保证订单不超卖、不少卖的一些策略,完整的订单系统还有订单进度的查看,每台服务器上都有一个任务,定时的从总库存同步余票和库存信息展示给用户,还有用户在订单有效期内不支付,释放订单,补充到库存等等。

我们实现了高并发抢票的核心逻辑,可以说系统设计的非常的巧妙,巧妙的避开了对DB数据库IO的操作,对Redis网络IO的高并发请求,几乎所有的计算都是在内存中完成的,而且有效的保证了不超卖、不少卖,还能够容忍部分机器的宕机。我觉得其中有两点特别值得学习总结:

  • 负载均衡,分而治之。通过负载均衡,将不同的流量划分到不同的机器上,每台机器处理好自己的请求,将自己的性能发挥到极致,这样系统的整体也就能承受极高的并发了,就像工作的的一个团队,每个人都将自己的价值发挥到了极致,团队成长自然是很大的。
  • 合理的使用并发和异步。自epoll网络架构模型解决了c10k问题以来,异步越来被服务端开发人员所接受,能够用异步来做的工作,就用异步来做,在功能拆解上能达到意想不到的效果,这点在nginx、node.js、redis上都能体现,他们处理网络请求使用的epoll模型,用实践告诉了我们单线程依然可以发挥强大的威力。服务器已经进入了多核时代,go语言这种天生为并发而生的语言,完美的发挥了服务器多核优势,很多可以并发处理的任务都可以使用并发来解决,比如go处理http请求时每个请求都会在一个goroutine中执行,总之:怎样合理的压榨CPU,让其发挥出应有的价值,是我们一直需要探索学习的方向。
相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
5月前
|
运维 监控 Serverless
并发性能提升 4 倍!云帐房用 Serverless 轻松应对瞬时业务洪峰
通过函数计算FC,云帐房实现了性能提升,减少了用户等待时间,同时成本降低了约30%。此外,函数计算FC的多版本管理和灰度发布功能加速了开发迭代,实时监控与告警简化了运维工作。未来,云帐房计划扩展更多FC应用,聚焦业务创新。
7568 9
|
7月前
|
存储 消息中间件 Java
【亿级数据专题】「高并发架构」盘点本年度探索对外服务的百万请求量的高可靠消息服务设计实现
在深入研究了 **“【亿级数据专题】「高并发架构」盘点本年度探索对外服务的百万请求量的API网关设计实现”** 设计实现后,我们意识到,尽管API网关为服务商提供了高效的数据获取手段,但实时数据的获取仍然是一个亟待解决的问题。
103 1
【亿级数据专题】「高并发架构」盘点本年度探索对外服务的百万请求量的高可靠消息服务设计实现
|
7月前
|
消息中间件 Java 程序员
阿里巴巴高并发架构到底多牛逼?是如何抗住淘宝双11亿级并发量?
众所周知,在Java的知识体系中,并发编程是非常重要的一环,也是面试的必问题,一个好的Java程序员是必须对并发编程这块有所了解的。
|
缓存 NoSQL 关系型数据库
性能第三讲:百万级QPS,支撑淘宝双11需要哪些技术
性能第三讲:百万级QPS,支撑淘宝双11需要哪些技术
1278 0
|
存储 缓存 数据库
百万QPS系统的缓存实践
标题有些吸引眼球了,但并不浮夸,甚至还会远远超过百万,现在的平均响应时间在1ms内,0.08ms左右 如此高的QPS,如此低的AVG,为什么会有如此效果,关键点可能就在多级缓存上 在开发高并发系统时有三把利器用来保护系统:缓存、降级和限流
666 0
百万QPS系统的缓存实践
|
负载均衡 NoSQL 网络协议
“12306” 是如何支撑百万 QPS 的?(一)
“12306” 是如何支撑百万 QPS 的?(一)
“12306” 是如何支撑百万 QPS 的?(一)
|
运维 监控 前端开发
函数计算助力高德地图平稳支撑亿级流量高峰
2020 年的“十一出行节”期间,高德地图创造了记录 ——截止 2020 年 10 月 1 日 13 时 27 分 27 秒,高德地图当日活跃用户突破 1 亿,比 2019 年 10 月 1 日提前 3 时 41 分达成此记录。 期间,Serverless 作为其中一个核心技术场景,平稳扛住了流量高峰期的考验。值得一提的是,由 Serverless 支撑的业务在流量高峰期的表现十分优秀,每分钟函数调用量接近两百万次。这再次验证了 Serverless 基础技术的价值,进一步拓展了技术场景。
5660 17
函数计算助力高德地图平稳支撑亿级流量高峰
EMQ
|
消息中间件 存储 负载均衡
车联网平台百万级消息吞吐架构设计
本文将主要介绍如何针对百万级消息吞吐这一需求进行新一代车联网平台架构设计。
EMQ
567 0
车联网平台百万级消息吞吐架构设计
|
缓存 监控 NoSQL
百万级QPS,支撑淘宝双11需要哪些技术
又到一年双11,相信大部分同学都曾经有这个疑问:支撑起淘宝双11这么大的流量,需要用到哪些核心技术?性能优化系列的第二篇我想跟大家探讨一下这个话题。
997 0
百万级QPS,支撑淘宝双11需要哪些技术
|
消息中间件 缓存 负载均衡
抗住百万高并发的 6 个关键技术!
高并发(High Concurrency)是互联网分布式系统架构设计中必须考虑的因素之一,它通常是指,通过设计保证系统能够同时并行处理很多请求。 高并发相关常用的一些指标有响应时间(Response Time),吞吐量(Throughput),每秒查询率QPS(Query Per Second),每秒事务处理量TPS(Transaction Per Second),并发用户数等。 响应时间:系统对请求做出响应的时间。
1827 0
抗住百万高并发的 6 个关键技术!