AIGC-知识库-LLM:在云上从0开始搭建智能问答机器人Streamlit网页版
本文描述在阿里云上从0开始构建个人/企业专属,具备私域知识库+LLM智能问答能力的网页版聊天机器人。网页采用streamlit实现,知识库技术方案使用了Lindorm AI数据服务平台知识库能力,LLM使用了开源ChatGLM2-6B。 Streamlit使用起来非常简便,可以让开发者快速(短则几十分钟即可)搭建一个具备公网访问能力的网页。尤其在人工智能开发上,可使用Streamlit快速搭建应用环境,让开发人员将更多精力集中在人工智能本身,本文从0开始详细讲解整个应用的构建过程,代码实现了一个简洁的具备公网访问能力的网页版聊天机器人。
前端大模型入门(二):掌握langchain的核心Runnable接口
Langchain.js 是 Langchain 框架的 JavaScript 版本,专为前端和后端 JavaScript 环境设计。最新 v0.3 版本引入了强大的 Runnable 接口,支持灵活的执行方式和异步操作,方便与不同模型和逻辑集成。本文将详细介绍 Runnable 接口,并通过实现自定义 Runnable 来帮助前端人员快速上手。
Java“未封闭的 String 表达式”怎么解决
要解决Java中的“未封闭的 String 表示”问题,需检查并修正字符串字面量,确保每个字符串被正确地用双引号括起来。若字符串跨越多行,可使用字符串连接操作符(+)或引入文本块(JDK 13 及以上版本)。这能帮助避免语法错误,并使代码更整洁易读。
Java 抽象类详解
在 Java 中,抽象类是一种特殊类,用于提供基础定义并派生具体子类,支持代码复用。它包含抽象方法(无实现)和具体方法(有实现),不能被实例化,需用 `abstract` 关键字定义。子类必须实现所有抽象方法,除非子类也是抽象类。抽象类可用于定义模板或框架,确保子类实现特定方法。通过示例展示了如何定义抽象类 `Animal` 及其子类 `Dog` 和 `Cat`,并在主类中调用相关方法。使用抽象类可以提高代码复用性和设计质量,但也可能增加维护难度和性能开销。
Github 2024-08-26 开源项目周报Top15
根据Github Trendings的统计,本周共有15个项目上榜。以下是按开发语言汇总的项目数量:Python项目8个,TypeScript、C++ 和 Rust 项目各2个,Jupyter Notebook、Shell、Swift 和 Dart 项目各1个。其中,RustDesk 是一款用 Rust 编写的开源远程桌面软件,可作为 TeamViewer 的替代品;Whisper 是一个通用的语音识别模型,基于大规模音频数据集训练而成;初学者的生成式人工智能(第2版)则是由微软提供的18门课程,教授构建生成式AI应用所需的知识。
使用Python获取1688商品详情的教程
使用Python爬取1688商品详情,涉及requests库抓取页面、BeautifulSoup解析HTML,安装必要库如requests、beautifulsoup4、pandas和lxml。通过get_page发送请求,BeautifulSoup解析提取如标题、价格等信息。数据处理后可使用pandas保存至CSV。注意遵守法律法规和网站政策,避免频繁请求。[代码片段及更多详情见链接
数据缓存系列分享(六):通义千问Qwen-14B大模型快速体验
阿里达摩院近期对通义千问大模型 Qwen-14B 进行了开源(之前开源的是Qwen-7B模型),目前在ModelScope和HuggingFace上均可直接下载。关于Qwen-7B的搭建可以参考我们之前的文章:数据缓存系列分享(五):开源大语言模型通义千问快速体验版,本文将使用一样的方式打开Qwen-14B,快速体验一下。
通义听悟发布,大模型的接入如何让产品更聪明?
你想要这样智能的AI助手吗?会议讨论打开实时记录,同步实现语音转文字、实时翻译以及要点总结,帮你记录每一个创意迸发的瞬间;学习工作上传一份音视频,区分发言人、完成文字转换、关键词定位,还能生成摘要,帮助你快速get内容的核心重点;当然,还具备 学习能力,通过文档词汇自学习,让它了解你的喜好,越学越聪明!
人工智能时代,我们依旧有无限的选择权!
“莫愁前路无知己” - 本文主要是为了缓解焦虑,以我与AI的互动为主线,分享了从童年科幻梦到工作中应用AI的经历。探讨了AI的现状与未来,强调了AI辅助编程的潜力和挑战,以及个人和企业应如何应对AI时代的变革。AI虽可能替代很多岗位,但也能带来新的机遇,关键在于适应和利用。
AI+脚本让我的效率翻倍,你也可以试试
本文分享了一名高级软件工程师如何利用 AI 工具(如 VSCode 插件 Codeium、通义灵码,及网页端的通义千问和 GPT-4)提升工作效率的经验。从代码生成、单元测试、脚本生成到文本润色,再到新框架学习,AI 工具在多个方面显著提高了开发效率和代码质量。文章还提供了具体示例和注意事项,帮助读者更好地应用这些工具。
【Prompt Engineering提示工程技术:思维树 (ToT)、检索增强生成 (RAG)、自动推理并使用工具 (ART)】
思维树(ToT)框架,旨在解决复杂任务,通过构建一棵思维树,利用语言模型生成并评估中间步骤,结合搜索算法(如广度优先搜索)进行系统探索。ToT在不同任务中需定义思维步骤及候选数量,如“算24游戏”需三分步骤,每步评估可行性。实验表明,ToT显著优于其他提示方法。此外,ToT框架可结合强化学习不断进化,提升解决复杂问题的能力。
Flux AI:释放你的想象力,用文字生成图像
Flux AI 是一款支持多种风格的 AI 图像生成器。它使用先进的基于变换器的管道模型来实现高质量、精确的输出。它具有用户友好的界面,适合专业人士和业余爱好者。Flux AI 可以快速将文本提示转换为精确的图像,从而提高创作效率。
智能对话机器人(通义版)会话接口API使用Quick Start
本文主要演示了如何使用python脚本快速调用智能对话机器人API接口,在参数获取的部分给出了具体的获取位置截图,这部分容易出错,第一次使用务必仔细参考接入参数获取的位置。
通义万相AIGC技术Web服务体验评测
随着人工智能技术的不断进步,图像生成技术已成为创意产业的一大助力。通义万相AIGC技术,作为阿里云推出的一项先进技术,旨在通过文本到图像、涂鸦转换、人像风格重塑及人物写真创建等功能,加速艺术家和设计师的创作流程。本文将详细评测这一技术的实际应用体验。
通义万相AIGC技术测评报告
**摘要:** 通义万相是阿里云的AI绘画模型,提供清晰的部署指南和易用的API,适合新手。资源部署耗时约10分钟,API响应快,支持多种风格图片生成,适用于广告、媒体等领域。产品性价比高,功能包括文本到图像转换等,但仍有改进空间,如增加服装纹理选项、互动功能和更多API接口。建议完善功能、加强推广和降低成本以吸引更多用户。[链接](https://developer.aliyun.com/topic/tongyi-wanxiang?spm=a2c6h.27063436.J_6978680750.5.3a774f461hv8qD)
入门生成式语言模型(Generative Language Models)
入门生成式语言模型涉及理解基本概念、学习NLP基础知识、掌握相关工具和框架、训练与评估模型、实践项目和案例,以及持续学习。关键步骤包括预训练、微调(如SFT、LoRA、Prefix Tuning)、模型选择(如LLaMA、ChatGLM、Bloom等)和优化部署(量化、剪枝)。训练策略包括Pretrain、SFT、LoRA等,模型如Qwen、GPT-3、OPT等,评估数据集有SuperGLUE、CLUEbenchmark等。此外,有专门的加速和分布式框架如DeepSpeed、Megatron、FairScale等,以及部署工具vLLM、TensorRT-LLM。
接入QAnything的AI问答知识库,可私有化部署的企业级WIKI知识库
zyplayer-doc是一款适合企业和个人使用的WIKI知识库管理工具,提供在线化的知识库管理功能,专为私有化部署而设计,最大程度上保证企业或个人的数据安全,可以完全以内网的方式来部署使用它。 您也可以将其作为企业产品的说明文档来使用,支持一键将整个空间的内容开放到互联网,提供有不同风格的开放文档页样式可供选择,以及适配了在手机端、小程序中文档的展示,省去为产品的说明文档而定制开发系统的成本。
【奶奶看了都会】ComfyUI+SVD制作AI视频教程,附效果演示
AI一天,人间一年。大家好啊,我是小卷,最近AI绘画又发展出一些新玩意了,小卷因为工作的关系有一个月没关注AI的发展了,都有点跟不上版本节奏了。。。
如何在 TensorRT-LLM 中支持 Qwen 模型
大型语言模型正以其惊人的新能力推动人工智能的发展,扩大其应用范围。然而,由于这类模型具有庞大的参数规模,部署和推理的难度和成本极高,这一挑战一直困扰着 AI 领域。此外,当前存在大量支持模型部署和推理的框架和工具,如 ModelScope 的 Model Pipelines API,和 HuggingFace 的 Text Generation Inference 等,各自都有其独特的特点和优势。然而,这些工具往往未能充分发挥 GPU 的性能。
【nlp-with-transformers】|Transformers中的generate函数解析
今天社群中的小伙伴面试遇到了一个问题,如何保证生成式语言模型在同样的输入情况下可以保证同样的输出。 这里面造成问题的因素有两个方面: 一个方面是在forward过程中参数的计算出现了差异,这种情况一般发生在游戏显卡中,游戏显卡无法保证每一次底层算子计算都是成功的,也没有办法保证同输入同输出,这里我们就需要采用具有ecc内存纠错机智的专用显卡用来解决相关的问题。
大模型体验体验报告:OpenAI-O1内置思维链和多个llm组合出的COT有啥区别?传统道家理论+中学生物理奥赛题测试,名不虚传还是名副其实?
一个月前,o1发布时,虽然让人提前体验,但自己并未进行测试。近期终于有机会使用,却仍忘记第一时间测试。本文通过两个测试案例展示了o1的强大能力:一是关于丹田及练气的详细解答,二是解决一道复杂的中学生物理奥赛题。o1的知识面广泛、推理迅速,令人印象深刻。未来,或许可以通过赋予o1更多能力,使其在更多领域发挥作用。如果你有好的测试题,欢迎留言,一起探索o1的潜力。
【Prompt Engineering提示:Active-Prompt、方向性刺激提示、PAL(程序辅助语言模型)】
Diao等人(2023)提出了一种名为Active-Prompt的新方法,通过自适应提示来优化大型语言模型(LLMs)在特定任务中的表现。此方法通过不确定性评估选择需标注的问题,利用少量人工标注的思维链(CoT)示例逐步优化模型,提高其解决问题的能力。相比固定范例,Active-Prompt能够更有效地针对不同任务调整提示,从而提升模型性能。
前瞻2024云栖大会-创意加速器解决方案
对于未来发展的期待,通义万相(或阿里其他文生图领域智能体)若能进一步拓展其能力边界,超越传统的文生艺术图的范畴,涉足更广泛的商业与专业领域,将极大地提升其市场竞争力和应用价值。例如,结合扩展现实(Extended Reality)、虚拟现实(Virtual reality)和增强现实(Augmented Reality)技术,打造更立体全面的数字创意解决方案。
我对计算机领域未来发展的期望和畅想
我期待未来计算机领域融合人性与智能,AI伙伴懂得人类情感,量子计算带来革命性变化。数字鸿沟将缩小,信息普惠全球,同时关注环保与可持续性,发展绿色计算。计算机系统将更安全,抵御网络威胁,保护用户隐私。最后,希望计算机科学教育普及,激发更多人投身科技创新,共创美好未来。
大语言模型的主流应用领域
大语言模型在多个领域都发挥着重要作用,从新闻报道到金融分析,从智能家居到在线教育、自然语言处理、智能客服、情感分析,它们都在推动技术进步并改善人们的生活质量。