恶意软件无处逃!国内版“Manus”AiPy开发Windows沙箱工具,进程行为+网络传输层级监控! 头像 豪气的
NImplant.exe 是一款后渗透测试工具,可实现远程管理与持久化控制。其优点包括无文件技术、加密通信和插件扩展,但也存在被检测风险及配置复杂等问题。为深入分析其行为,我们基于 aipy 开发了 Windows 沙箱工具,针对桌面上的 NImplant.exe 进行多维度分析,涵盖进程行为、网络连接(如 TCP 请求、目标 IP/域名)、文件控制等,并生成传输层监控报告与沙箱截图。结果显示,aipy 工具响应迅速,报告清晰易读,满足分析需求。
Spark-TTS: AI语音合成的"变声大师"
Spark-TTS 是一款革命性的语音合成模型,被誉为“变声大师”。它通过创新的 BiCodec 技术将语音分解为语义和全局两种 Token,实现对音色、性别、语速等属性的精细控制。结合统一的 LLM 架构,Spark-TTS 简化了传统 TTS 的复杂流程,同时提供了前所未有的灵活性。此外,团队还发布了 VoxBox 开源数据集,为行业提供标准评估基准。尽管在零样本场景下仍存改进空间,但 Spark-TTS 已经开启了语音合成新时代,让个性化、可控的 AI 语音成为可能。
Arthas redefine(加载外部的.class文件,redefine到JVM里 )
Arthas redefine(加载外部的.class文件,redefine到JVM里 )
释放数据潜力:利用 MCP 资源让大模型读懂你的服务器
MCP(Model Control Protocol)资源系统是将服务器数据暴露给客户端的核心机制,支持文本和二进制两种类型资源。资源通过唯一URI标识,客户端可通过资源列表或模板发现资源,并使用`resources/read`接口读取内容。MCP还支持资源实时更新通知及订阅机制,确保动态数据的及时性。实现时需遵循最佳实践,如清晰命名、设置MIME类型和缓存策略,同时注重安全性,包括访问控制、路径清理和速率限制等。提供的示例代码展示了如何用JavaScript和Python实现资源支持。
小模型也能有类o1的慢思考能力?使用CAMEL生成CoT数据、Unsloth微调Qwen2.5-1.5B模型并上传至Hugging Face
本项目利用CAMEL生成高质量的CoT数据,结合Unsloth对Qwen2.5-1.5B模型进行微调,并将结果上传至Hugging Face。通过详细步骤介绍从数据生成到模型微调的完整流程,涵盖环境配置、API密钥设置、ChatAgent配置、问答数据生成与验证、数据转换保存、模型微调及推理保存等内容。最终展示了如何优化问答系统并分享实用技巧。 [CAMEL-AI](https://github.com/camel-ai/camel) 是一个开源社区,致力于智能体扩展研究。欢迎在GitHub上关注并加入我们!
使用CAMEL框架和Qwen模型自动进行数据获取及报告与知识图谱生成
此笔记本演示如何设置和利用 CAMEL 的检索增强生成(RAG)结合 Milvus 进行高效的网页抓取、多智能体角色扮演任务和知识图谱构建。我们将通过一个使用 Qwen 模型对 2024 年巴黎奥运会的土耳其射手进行全面研究的例子来逐步演示。
Qwen for Tugraph:自然语言至图查询语言翻译大模型微调最佳实践
在图数据库的应用场景中,自然语言至图查询语言的高效转换一直是行业中的重要挑战。本次实践基于阿里云 Qwen 大模型,围绕 TuGraph 图数据库的需求,探索并验证了一套高效的大模型微调方案,显著提升了模型生成 Cypher 查询语句的能力。通过数据清洗、两阶段微调方法以及两模型推理框架等一系列创新策略,我们成功解决了图查询语言翻译任务中的核心问题。本文将从背景与目标、数据准备与清洗、微调框架设计、Prompt设计与优化、模型推理、最佳实践效果以及前景展望等六个部分出发,向读者逐步介绍我们的方案。
合合信息亮相CSIG AI可信论坛,全面拆解视觉内容安全的“终极防线”!
合合信息在CSIG AI可信论坛上,全面拆解了视觉内容安全的“终极防线”。面对AI伪造泛滥的问题,如Deepfake换脸、PS篡改等,合合信息展示了其前沿技术,包括通用PS检测系统和AIGC与换脸检测系统,有效应对视觉内容安全挑战。公司在国际赛事中屡获殊荣,并联合多方发布《文本图像篡改检测系统技术要求》,推动行业标准化发展。通过技术创新,合合信息为金融、政企等领域提供可靠保障,守护社会信任,引领视觉内容安全新方向。
Java“未封闭的 String 表达式”怎么解决
要解决Java中的“未封闭的 String 表示”问题,需检查并修正字符串字面量,确保每个字符串被正确地用双引号括起来。若字符串跨越多行,可使用字符串连接操作符(+)或引入文本块(JDK 13 及以上版本)。这能帮助避免语法错误,并使代码更整洁易读。
Github 2024-08-05 开源项目周报 Top15
根据 Github Trendings 的统计,本周(2024年8月5日统计)共有15个项目上榜。以下是根据开发语言汇总的项目数量: - Go 项目:4个 - JavaScript 项目:3个 - Python 项目:3个 - Java 项目:2个 - TypeScript 项目:2个 - C 项目:1个 - Shell 项目:1个 - Dockerfile 项目:1个 - 非开发语言项目:1个
Github 2024-08-01 开源项目月报 Top17
根据Github Trendings统计,2024年8月共有17个项目上榜。按开发语言分类,项目数量如下:Python项目6个,非开发语言项目与TypeScript项目各4个,JavaScript项目3个,Java、Go及Vue项目各1个。其中,免费编程学习平台freeCodeCamp.org以381,011个Star数领先,提供全栈网页开发和机器学习课程。其他项目涵盖编程书籍、API集合、低代码开发平台等多种资源。
用通义Qwen大模型和Streamlit构建 ChatPDF 应用(附代码)
本文介绍了如何利用通义千问Qwen大模型构建一个本地ChatPDF AI助手,该助手允许用户上传PDF并与之对话,确保文档隐私安全。项目通过阿里云百炼平台获取Qwen-Long模型,支持多种文档格式。现实现步骤包括导入库、加载环境变量、初始化客户端、编码器、页面与对话管理、文件上传、选择模型、获取AI回答及计算费用,主函数整合这些功能,提供交互体验。
大语言模型的主流应用领域
大语言模型在多个领域都发挥着重要作用,从新闻报道到金融分析,从智能家居到在线教育、自然语言处理、智能客服、情感分析,它们都在推动技术进步并改善人们的生活质量。
2023第十二届中国智能产业高峰论坛之文档大模型的探索与思考
近日,2023第十二届中国智能产业高峰论坛(CIIS 2023)在江西南昌顺利举行,本次论坛主要讲解了关于AI大模型、生成式AI、无人系统、智能制造和数字安全等领域的议题。其中令我印象最深刻的就是上海合合信息的丁凯老师讲解的**多模态大模型与文档图像智能理解专题论坛**的部分了。
通义千问开源第二波!多模态来啦!(内含魔搭最佳实践)
近期,通义千问大规模视觉语言模型Qwen-VL上线魔搭社区,Qwen-VL以通义千问70亿参数模型Qwen-7B为基座语言模型研发,支持图文输入,具备多模态信息理解能力。
社区供稿 | 10G显存,通义千问-7B-int4消费级显卡最佳实践
在魔搭社区,通义千问团队发布了Qwen-7B-Chat的Int4量化模型,Qwen-7B-Chat-Int4。该方案的优势在于,它能够实现几乎无损的性能表现,模型大小仅为5.5GB,内存消耗低,速度甚至超过BF16。
【OpenVI-AIGC系列之通义文生图1.0实战篇】用AI画兔子喜迎新春,AIGC有什么魔力?
AIGC指的是AI Generated Content,即由AI创作的内容,是继UGC(User Generated Content用户创造内容,如抖音b站等平台)、PGC(Professional Generated Content专业生产内容,如腾讯视频等)之后的新型内容生产方式。由于AIGC生成内容版权可以属于用户,在后续二创、不同平台内容分发方面优势明显。 up主们纷纷使用AIGC进行短视频内容创作,能绘画天马行空的场景、栩栩如生的人物。对于普通人来说,这些新技术可以提供更好的创意平台和更丰富的视觉体验,使个人更容易创建和分享自己的艺术作品,从而激发更多的创意和想象力。
如何向大模型注入知识?达摩院通义对话模型SPACE系列探索
如何将人类先验知识低成本融入到预训练模型中一直是个难题。达摩院对话智能团队提出了一种基于半监督预训练的新训练方式,将对话领域的少量有标数据和海量无标数据一起进行预训练,从而把标注数据中蕴含的知识注入到预训练模型中去,打造了SPACE 1/2/3 系列模型,在11个国际公开对话数据集取得SOTA。
从“会用 AI”到“指挥 AI”:AI调度官能力模型解析
AI调度官是面向多模型协同的新型系统角色,聚焦任务拆解、能力编排与运行约束,实现AI能力的统一调度、闭环管控与稳定执行,支撑可扩展、可解释、可持续演进的智能协同体系。
ooderAgent Nexus 版本核心场景测试报告
本报告对ooderAgent Nexus v0.6.5开展五大核心场景测试:服务发现(UDP广播,100%成功率)、三层代理协同、多网络适配、并发性能(50并发吞吐349.7 req/s)及异常恢复能力。全部测试通过,验证其具备局域网生产落地基础,适用于个人及小型企业场景。(239字)
破局 AI Agent 搭建师职业焦虑:从提示词写手到业务确定性架构师
本文剖析AI Agent搭建师面临“上下挤压+落地鸿沟”的职业焦虑根源,指出其本质是行业演进下的角色升级需求。文章提出从成因拆解、定位重构(转向“确定性业务结果的系统架构师”)、能力升级(SOP状态机、幻觉对抗、RAG治理)到路径落地的完整破局框架,助力从业者转型为AI业务架构师或AI系统工程师。(239字)
AI Agent指挥官在智能体来了(西南总部)中的定义、职责与Prompt控制逻辑
AI Agent指挥官是多智能体系统的调度与治理中枢,通过任务拆解、角色分配、Prompt统一管控及闭环反馈,将大模型“个体智能”升维为可控、可解释、可扩展的“组织智能”,赋能企业级智能协同与产业落地。(
智能体领航员:重塑闲暇艺术与深度体验
本文探讨智能体如何从提升效率转向升华体验:它不仅是工具,更是领航员——带我们逃离算法平庸,发现未被标记的风景、共创审美、守护深度闲暇,并坚守感官原生性与审美主权。科技终为体验服务,重拾人类鲜活感知。(239字)
破局 AI Agent 搭建师职业焦虑:从配置员到智能体架构师的体系化进阶路线
随着AI从演示走向落地,传统AI Agent搭建师面临价值坍缩。低代码平台普及、大模型原生能力提升与自生成框架发展,正瓦解其“配置员”角色。破局之道在于向“智能体架构师”跃迁:掌握流程工程、数据治理、多智能体协同与量化评估四大能力,从工具操作转向系统设计,在人机共生时代构建不可替代的业务闭环解决能力。(238字)
论文被拒往往不是因为数据差,而是逻辑崩了:用这条指令重塑你的学术骨架
审稿人看论文只用15分钟,结构决定生死。大多数被拒论文并非数据不行,而是逻辑崩塌。本文提供一套博导级AI指令,通过逆向工程和审稿视角,帮你快速构建逻辑严密、符合规范的论文框架,将写作效率提升10倍,从根源上降低拒稿风险。
TypeScript 终极入门指南:从零到精通 🚀
TypeScript是JavaScript的超集,添加静态类型系统,提升代码健壮性与可维护性。本教程涵盖基础类型、高级特性、面向对象编程及最佳实践,配代码示例与图解,助你快速掌握TS核心概念,轻松进阶前端开发!🎉
释放Qwen3-Coder潜力:Bolt+AnalyticDB Supabase,打造真正的生产力工具
阿里云发布Qwen3-Coder,具备卓越自主编码能力,支持超长上下文窗口与工具调用,结合Bolt与AnalyticDB Supabase,实现高效开发。
人工智能驱动的软件工程:测试左移的崛起价值
本文探讨了人工智能驱动下测试左移理念在软件工程中的重要性,分析测试工程师在需求评估、AI代码生成及遗留系统优化中的关键作用,揭示AI带来的挑战与机遇,并指出测试工程师需提升技能、关注合规与可维护性,以在AI时代保障软件质量。
设计稿一键变代码,VTJ.PRO 让想象与实现再无距离。
VTJ.PRO联合MasterGo推出智能设计识别引擎,助力设计师高效生成Vue组件代码,打通设计与开发协作壁垒,提升团队效率。限时领取百万AI额度,开启智能开发新时代!
Aipy实战:使用Deepseek-V3生成多协议弱口令爆破调度工具
Aipy多协议弱口令爆破调度系统针对传统单协议工具碎片化、管理低效等问题,集成HTTP、SSH、MySQL等协议支持,提供图形化统一操作界面。其核心特性包括:动态资源分配的任务调度、实时可视化进度监控、智能账户锁定识别及HTML结果导出。通过上传自定义字典、配置并发数等功能,实现高效爆破,解决了多协议切换中断、人工追踪进度等痛点,为渗透测试提供自动化解决方案。
AI大模型进阶系列(02)基于Spring AI实现AI chatbot助理|一句话让deepseek实现
本文介绍了通过DeepSeek生成一个基于Spring AI的在线AI聊天助手项目的全过程。项目采用JDK17+Spring AI+Thymeleaf+Spring Web技术栈,实现了一个简单的聊天界面,用户可输入内容并获得DeepSeek返回的结果。文章详细描述了从需求明确、项目结构设计到配置参数启动的步骤,并展示了核心代码片段如pom.xml、application.properties及主要Java类文件。尽管功能简单,但体现了AI在编程领域的高效应用,未来有望进一步优化上下文记忆等功能,提升开发体验与效率。
从“泛读”到“精读”:合合信息文档解析如何让大模型更懂复杂文档?
随着deepseek等大模型逐渐步入视野,理论上文档解析工作应能大幅简化。 然而,实际情况却不尽如人意。当前的多模态大模型虽然具备强大的视觉与语言交互能力,但在解析非结构化文档时,仍面临复杂版式、多元素混排以及严密逻辑推理等挑战。
鸿蒙 Next 对接 AI API 实现文字对话功能指南
本指南介绍如何在鸿蒙 Next 系统中对接 AI API,实现文字对话功能。首先通过 DevEco Studio 创建项目并配置网络权限,选择合适的 AI 服务(如华为云或百度文心一言)。接着,使用 Node.js 转发请求,完成客户端与服务器端代码编写。最后进行功能测试与优化,确保多轮对话顺畅、性能稳定。此过程需严格遵循开发规范,充分利用系统资源,为用户提供智能化交互体验。