暂无个人介绍
本文介绍使用MindOpt工具优化光储荷经济性调度的数学规划问题。光储荷经济性调度技术旨在最大化能源利用率和经济效益,应用场景包括分布式光伏微网、家庭能源管理系统、商业及工业用电、电力市场参与者等。文章详细阐述了如何通过数学规划方法解决虚拟电厂中的不确定性与多目标优化难题,并借助MindOpt云建模平台、MindOpt APL建模语言及MindOpt优化求解器实现问题建模与求解。最终案例展示了如何通过合理充放电策略减少37%的电费支出,实现经济与环保双重效益。读者可通过提供的链接获取完整源代码。
本文主要讲述了使用MindOpt工具对切割问题进行优化的过程与实践。切割问题是指从一维原材料(如木材、钢材等)中切割出特定长度的零件以满足不同需求,同时尽可能减少浪费的成本。文章通过实例详细介绍了如何使用MindOpt云上建模求解平台及其配套的MindOpt APL建模语言来解决此类问题,包括数学建模、代码实现、求解过程及结果分析等内容。此外,还讨论了一维切割问题的应用场景,并对其进行了扩展,探讨了更复杂的二维和三维切割问题。通过本文的学习,读者能够掌握利用MindOpt工具解决实际切割问题的方法和技术。
本文通过使用MindOpt工具优化仓储物流调度问题,旨在提高物流效率并降低成本。首先,通过考虑供需匹配、运输时间与距离、车辆容量、仓库储存能力等因素构建案例场景。接着,利用数学规划方法,包括线性规划和网络流问题,来建立模型。在网络流问题中,通过定义节点(资源)和边(资源间的关系),确保流量守恒和容量限制条件下找到最优解。文中还详细介绍了MindOpt Studio云建模平台和MindOpt APL建模语言的应用,并通过实例展示了如何声明集合、参数、变量、目标函数及约束条件,并最终解析了求解结果。通过这些步骤,实现了在满足各仓库需求的同时最小化运输成本的目标。
本文探讨了如何利用数学规划工具MindOpt解决交通调度问题。交通调度涉及网络流分析,考虑道路容量、车辆限制、路径选择等因素,以实现高效运行。通过建立数学模型,利用MindOpt云平台和建模语言MAPL,设定流量最大化目标并确保流量守恒,解决实际的调度问题。案例展示了如何分配车辆从起点到终点,同时满足道路容量约束。MindOpt Studio提供在线开发环境,支持模型构建和求解,帮助优化大规模交通调度。
本文介绍了使用阿里巴巴达摩院的MindOpt工具解决人员排班的数学规划问题。人员排班在多个行业中至关重要,如制造业、医疗、餐饮和零售等。问题涉及多种约束,包括工作需求、员工能力、工作时间限制、连续工作天数及公平性。通过MindOpt云建模平台和建模语言MindOpt APL,建立数学模型并编写代码来解决最小化总上班班次的问题。案例中展示了如何声明集合、参数、变量和约束,并给出了部分代码示例。最后,通过MindOpt求解器得到最优解,并将结果输出到CSV文件中。
**文章摘要:** 本文探讨了使用阿里巴巴达摩院的MindOpt优化求解器解决制造业中的排产排程问题。排产排程涉及物料流动、工序安排、设备调度等多个方面,通常通过数学规划方法建模。MindOpt支持线性规划、整数规划等,能有效处理大规模数据。案例以香皂制造工厂为例,考虑了多种油脂的购买、存储和生产计划,以及价格变化和存储成本。问题通过数学建模转化为MindOpt APL代码,求解器自动寻找最优解,以最大化利润。文章还提供了代码解析,展示了解决方案的细节,包括目标函数(利润最大化)、约束条件(如生产效率、库存管理)以及结果分析。
使用阿里云MindOpt工具,文章展示了如何解决仓库选址的数学规划问题。该问题涉及构建工厂以供应多个商店,考虑因素包括建设成本、库存成本、运输成本和需求量。MindOpt是一个优化求解器,能处理大规模数据的数学规划问题。通过声明集合、参数、变量、目标函数和约束条件,构建模型并求解,以最小化总成本。文中还提到了不同行业的应用场景,如农业、制造业、零售业和电商,并提供了视频讲解和代码示例。
本文探讨了使用阿里巴巴达摩院的MindOpt工具解决FlowShop流水线作业排班的数学规划问题。FlowShop涉及到多台机器、多个工序和多个作业,目标是通过优化排班最小化总生产耗时。MindOpt通过数学规划方法,如线性或混合整数线性规划,将问题建模并转化为代码,利用云建模平台MindOpt Studio和MindOpt APL建模语言进行求解。案例中详细介绍了参数定义、变量解析、约束设置和目标函数,展示了如何通过MindOpt进行建模和求解,以达到最优化的生产调度。此外,文章还提供了代码示例和结果解析,帮助读者理解如何实际应用MindOpt解决这类问题。
SVM专注于为二分类问题找到最佳决策边界,即超平面,该平面能最大化两类数据之间的空隙或间隔。线性SVM假设用一个直线(或高维空间中的超平面)足以有效地分隔数据。当遇到重叠或杂乱无章散布的数据时,软间隔SVM允许某些点位于错误的边界一侧,这通过引入松弛变量与罚项系数C来实现,从而提供一个稳健的平衡方案。
在很多场景里,由于智能决策运行环境不允许联网、网络不稳定、或者需要毫秒级计算决策方案需要节省联网耗时等场景,多用户反馈需要【不联网】的License。
选择一款适合自己业务需求的求解器我们一般需要考量什么呢?可求解的问题类型?问题规模?本文将介绍一些需要考虑的重要因素,并且介绍阿里达摩院MindOpt优化求解器在这些因素下的表现。
组合优化是数学优化的一支,专注于从有限集合中选取元素的最优化问题。它涉及将一组对象组合在一起,以满足特定条件并优化某个目标函数,即在所有可能的组合中找到最有利的一个。 本文将以一个简化的背包问题为例,来讲解采用数学规划的方法来解决背包这个组合优化问题。
装箱问题(Bin Packing Problem)是组合优化领域中的一个经典问题,主要涉及如何将一系列对象高效地装入有限数量的容器(或“箱”)中,同时满足特定的约束条件。这个问题的目标是最小化所需使用的箱子数量或者最大化箱子的装载效率,以减少空间或资源的浪费。
MindOpt APL (MAPL) 是由阿里巴巴达摩院研发的国产建模语言,专长于电力SCUC等问题,提供向量化建模支持,可与Mindopt Studio平台集成。最新版2.4增加了向量化建模、Linux环境下通过pip安装支持以及改进了打印显示和错误提示。MAPL的向量化建模提高了效率,适合大规模问题。用户可通过云平台Docker打包或pip安装使用,支持多种求解器,包括MindOpt和开源求解器。
Mindopt是一款高性能优化求解器,专为求解大规模数学规划问题,当前支持线性规划 (LP) 、混合整数线性规划 (MILP) 、非线性规划(QP、SDP)。其强大的算法旨在有效地找到符合规规则约束、目标值最优的最佳解决方案,使其成为运筹学必学工具,广泛用在电商互联网、金融、电力能源、工业制造、交通物流等领域。
旅行是许多人的热爱,但是在规划一个完美的假期时,找到最经济的路线常常是一个挑战。这里就需要引入一个著名的优化问题——旅行商问题。本文将介绍TSP的基础知识,并使用MTZ消除子环方法优化一个简单的TSP问题的示例。
使用MindOpt时常见的报错,以及对应的解决方法
在企业在面临大量多样化的生产任务时,如何合理地安排流水线作业以提高生产效率及确保交货期成为了一个重要的问题。
数学规划是一种数学优化方法,主要是寻找变量的取值在特定的约束情况下,使我们的决策目标得到一个最大或者最小值的决策。
在制造业,高效地利用材料不仅是节约成本的重要环节,也是可持续发展的关键因素。无论是在金属加工、家具制造还是纺织品生产中,原材料的有效利用都直接影响了整体效率和环境影响。
MindOpt云上建模求解平台是阿里巴巴达摩院研发的一款“优化领域”的云平台。它结合了最新的算法研究和云技术,为用户提供了一个易于使用的界面和强大的后台计算能力。该平台支持广泛的优化问题,包括线性规划、整数规划、非线性规划和混合整数规划等。
MindOpt是阿里巴巴达摩院决策职能实验室研发的专注于优化领域,提供智能优化解决方案的品牌。主要的目标是帮助客户通过先进的优化算法和技术,实现业务流程的最佳化,提升效率,降低成本,并最大化业务价值。
本文将以阿里达摩院研发的MindOpt建模语言(MindOpt Algebra Programming Language, MindOptAPL,简称为MAPL)来讲解。MAPL是一种高效且通用的代数建模语言,当前主要用于数学规划问题的建模,并支持调用多种求解器求解。
建模语言可以提供更高级、更灵活的问题描述方式,从而提高问题的理解和求解效率。它可以加速问题的开发和部署过程,促进不同领域之间的合作和交流,从而推动问题求解的进展和创新。
不同的编程语言写入表格文件的方式均不相同,下面将展示MindOpt APL建模语言的方式。
种植计划是指农业生产中针对不同农作物的种植时间、面积和种植方式等方面的规划安排。根据具体情况进行合理的规划和安排,以实现农作物的高产、优质和可持续发展。
前篇我们讲述了使用加权和法对多目标规划问题的优化,本篇将讲述使用目标规划法。
多目标规划(Multi-objective programming)是指在一个优化问题中需要同时考虑多个目标函数的优化。在多目标规划问题中,目标函数之间通常是互相冲突的,即在优化一个目标函数的过程中,另一个或几个目标函数可能会受到影响。因此,多目标规划问题的目标是找到一个解x,使得在满足约束的前提下,所有目标函数达到一个相对满意的折中。
比上一篇问题02中,我们只考虑了一次性的采购和生产计划,实际中的排产排程问题要更加复杂和精细。例如,我们要考虑未来三个月内采购和排产排程计划。其中,原材料每个月的采买价格均有不同,并且原材料购买后的存储也需要成本开销。在本节中,我们将考虑这样一个相对复杂的排产排程的决策问题。
排产排程、原料采购、仓储存放等是制造业降本增效的关键问题。
本篇我们要讲述的案例是工厂生产相关,一个好的管理者会合理安排生产计划,让生产机器在固定的时间,不同的产品,生产效率的差异中尽可能的让工厂的利益最大化。那么面对这一问题,如果计算量比较大,该如何是好呢?
使用数学规划技术时,需要运用运筹学的知识分析问题、数学建模和开发程序来计算。平台式的开发环境,可以集成多款优化求解算法和数据处理软件,易于使用,能提高开发的效率,帮助快速将优化技术应用于业务。
人员排班在各行各业都具有重要的实际应用价值,可以帮助企业和机构提高管理效率、降低成本,同时提升员工的工作满意度和整体效能。
一直以来,我们MindOpt 求解器的API在使用上收到了很多的咨询和反馈,V0.x版本的API在使用上有些不便,为了解决用户的问题,我们团队努力开发了一版全新的API,升级软件版本号为V1.x。
仓库选址问题是一个重要的运筹学问题,它涉及到在一个给定的地理区域中选择最佳的仓库位置以最小化总成本或者提高效率。仓库选址问题在现代物流和供应链管理中具有重要的应用,因为仓库的位置直接影响到货物的运输成本、交货时间和库存量等因素。
仓储物流调度是指在物流供应链中,对仓储和运输(运输路线、成本)进行协调和安排的过程。主要包含物流计划、运输调度、运发管理、库存管理等重要环节。随着网络、电商行业的迅速发展,仓储物流调度对于企业来说也非常重要,优秀的调度方案可以帮助降低库存成本、物流配送的效率、成本等等等,从而给企业带来降本增效。
在数学规划中,网络流问题是指一类基于网络模型的流量分配问题。网络流问题的目标是在网络中分配资源,使得网络的流量满足一定的限制条件,并且使得某些目标函数最小或最大化。网络流问题通常涉及一个有向图,图中每个节点表示一个资源,每条边表示资源之间的关系。边上有一个容量值,表示该边上最多可以流动的资源数量。流量从源节点开始流出,经过一系列中间节点,最终到达汇节点。在这个过程中,需要遵守一定的流量守恒和容量限制条件。
资产配置,投资组合是指通过分散投资资金的方式来规避投资过程中的风险。在实际的投资过程中,如何决定投资哪些产品来实现收益最大化和风险最小化是一个关键的问题。
MindOpt Tuner是达摩院决策智能实验室基于mindopt优化求解器研发的调参器,超参自动优化工具,它可以帮助运筹优化工程师在使用求解器时自动搜索最佳参数组合,尝试不同的参数组合,评估每组参数的性能,然后基于这些结果来确定最佳参数。这样可以大大减少手动调整参数的时间和精力,并且可以帮助提升求解性能。
优化求解器往往拥有很多配置参数,例如启发式方法的开关、割平面方法的开关、预处理的配置以及各种误差容忍度等等。MindOpt Tuner会尝试不同的参数组合,评估每组参数的性能,然后基于这些结果来确定最佳参数。这样可以大大减少手动调整参数的时间和精力,并且可以帮助提升求解性能。
智慧楼宇调度,是在保证社区负荷需求的情况下,通过储能设备的指令控制,以用电经济性、环保性和对电网稳定性为综合目标的一种调度场景。
近年来,在实现“双碳”目标的道路上,以风、光为代表的可再生能源作为缓解能源压力、促进可持续发展的重要途径广受关注。虚拟电厂作为一种区域性多能源聚合形式,实现了可再生能源大量接入电力系统运行,推动城市能源系统绿色高效发展。研究大规模常态化运行的虚拟电厂关键技术成为亟待解决的问题。分布式光伏、分布式储能及可控负荷等灵活性资源具有容量小、资源种类多、数量庞大等特点,难以直接参与电网互动运行。虚拟电厂有效聚合电源、负荷、储能等各类资源,参与电力市场,响应价格信号,为电网提供调峰、调频、调压与备用等辅助服务。
本系列将讲解多篇运输问题的示例,讲解对于不同的运输问题场景,用数学规划的方法进行线性规划问题建模,并进行求解得到解决方案。
PIP是通用的Python包管理工具,用于第三方库的查找、下载、安装、卸载等功能,使用简单。MindOpt优化求解器已经将安装包上传至Python第三方库,也支持通过pip安装Python SDK了,并且此方式安装无需再配置license文件。
本系列将讲解多篇运输问题的示例,讲解对于不同的运输问题场景,用数学规划的方法进行线性规划问题建模,并进行求解得到解决方案。
MindOpt在使用单纯形法求解线性规划问题这一功能上已经取得了不错的成绩,但在实际生活中,可能会遇到一些结构特殊的线性规划问题,这类问题可能存在比单纯形法更加简便的算法。本篇小编将介绍MindOpt如何求解这么一类特殊结构的线性规划问题——运输问题。
V0.24.0版本的MindOpt优化求解器新增了数据脱敏功能,可以对输入模型文件进行数据脱敏。将优化问题中问题名、决策变量、约束条件名称这些和业务场景相关的数据进行脱敏变更,使得优化问题的数据仅保留看不出用途的数值信息,隐藏业务信息。方便外发数据去做技术可行性验证、方案咨询、测试等。
支持向量机(Support Vector Machine, SVM),是一类按监督学习方式对数据进行分类的线性分类器。其核心思想是在特征空间内找到使不同类别的样本间距最大的决策边界。SVM模型中经常会引入正则化项(regularization term)来提高模型鲁棒性或者引入先验知识。L1 - regularized SVM就是在模型中加入L1正则化项(也即 ||x||1 ),将特征向量的稀疏性(会令特征向量x中某一些参数等于0)这个先验知识引入到模型中,进而提高分类效率。
本篇我们讲述的是Linear Regression线性回归中的鲁棒线性回归。鲁棒回归又称为稳健回归,是统计学稳健估计的方法之一,主要思路是对离群点十分敏感的最小二乘回归中的的函数进行修改。