暂无个人介绍
普林斯顿大学推出开源软件工程代理SWE-agent,利用GPT-4转化成能修复GitHub错误的AI程序员。在某些基准测试中,SWE-agent的表现与Devin相当,甚至在修复Bug速度上超越Devin,平均只需93秒。其特点是拥有开源接口,支持代码编辑和执行,提高了与代码库的交互效率。
本文介绍了多个开源游戏引擎和框架,如 Bevy(用 Rust 构建)、Mach、Axmol、Cocos、Open 3D Engine、KorGE、Tiled、OpenRA 和 Godot。这些工具降低了游戏开发的门槛,支持跨平台开发,并推动了游戏行业的发展。
Google DeepMind和斯坦福大学的研究人员发布了《衡量大型语言模型长篇事实性》论文,提出了新数据集LongFact(含2,280个问题)和评估方法SAFE,用于检查AI模型在生成长文时的事实准确性、连贯性和详尽性。
这篇摘要主要介绍了美团外卖在搜索推荐业务中如何利用图技术解决挑战,包括外卖广告搜索推荐业务的介绍、异构大图的演进、大规模图引擎的建设,以及系统的总结和展望。
在数字化时代,即时通讯(IM)已成为日常生活和工作的重要部分,开源IM应用因其透明度、可定制性和社区支持受到关注。
本文主要讲解购买AMD实例规格时可以为实例配置应用加速功能,配置后可以针对不同的应用场景实现深度优化后的性能提升。
在2024年的GTC大会上,英伟达创始人黄仁勋揭幕了新一代AI芯片Blackwell,号称是史上最强AI芯片,目标是推动AI领域的重大进步。
Yitian710 作为平头哥第一代ARM通用芯片,在AI场景与X86相比,软件生态与推理性能都存在一定的短板,本文旨在通过倚天AI计算库的优化,打造适合ARM架构的软件平台,提升倚天性能
不同的AMD实例可能需要特定版本的驱动程序和内核来运行。购买AMD实例规格时,建议您使用官方支持的操作系统版本,以确保其包含适用于您的AMD实例的必要驱动程序和内核版本。本文主要说明不同代系的AMD实例与不同版本的操作系统镜像之间的兼容性。
阿里云最新产品手册——阿里云核心产品——倚天710自制脑图
在平头哥发布了首颗为云而生的 CPU 芯片倚天710之后,搭载倚天 710 的 ECS 实例表现出强劲的性能实力,在x264编解码场景下有着极高的性价比。
北京时间 2 月 22 日,半导体巨头 Arm 更新了 Arm® Neoverse™ 产品路线图,宣布推出两款基于全新第三代 Neoverse IP 构建的全新计算子系统(CSS):Arm Neoverse CSS V3 和 Arm Neoverse CSS N3。
随着云计算技术的快速发展,云服务器在各个领域得到了广泛应用。其中,倚天云服务器以其独特的CIPU架构和倚天710处理器的优势,引起了广大用户的关注。本测评报告旨在通过对倚天云服务器的实例使用、业务部署、性能测试和迁移体验等方面进行评估。
YODA(Yitian Optimal Development Assistant,倚天应用迁移工具)旨在帮助用户更加高效、便捷地实现跨平台、跨结构下的应用迁移,大幅度缩短客户在新平台上端到端性能验证所需的人力和时间,使得客户更加专注于应用本身算法的优化,协同客户实现降本增效。
倚天710构建的ECS产品,基于云原生独立物理核、大cache,结合CIPU新架构,倚天ECS在Nginx场景下,具备强大的性能优势。相对典型x86,Http长连接场景性能收益27%,开启gzip压缩时性能收益达到74%。 同时阿里云G8y实例售价比G7实例低23%,是Web Server最佳选择。
Redis在倚天ECS环境下与同规格的基于 x86 的 ECS 实例相比,Redis 部署在基于 Yitian 710 的 ECS 上可获得高达 30% 的吞吐量优势。成本方面基于倚天710的G8y实例售价比G7实例低23%,总性价比提高50%;按照相同算法,相对G8a,性价比为1.4倍左右。
虚拟化技术中最关键的技术之一就是CPU虚拟化。在没有硬件辅助虚拟化技术出来之前,通常都是通过TCG(软件进行指令翻译)的方式实现CPU虚拟化。但是由于TCG方式的虚拟化层开销太大,性能太差,因此引入了硬件辅助虚拟化技术。
本文介绍利用倚天710平台的RAS特性,实现OS降级运行,提高系统稳定性
上个月底,马斯克在 X 上发文称,第一位人类患者已接受 Neuralink 的脑机接口芯片植入,并表示“患者恢复良好”,还揭示了 Neuralink 的第一个芯片产品名为“Telepathy(心灵感应)”。
本文介绍了x86软件迁移到Arm过程中可能遇到的弱内存序问题的解决方案,解析了弱内存序问题的根因,介绍了Hawkeyes的架构和实现原理。欢迎有需求的团队发送邮件咨询
2月29日,阿里云全线下调云产品官网售价,平均降价幅度超过20%,最高降幅达55%。
今天分享的内容来自阿里云倚天ECS高级架构师张先国的“ARM架构和避坑指南”。本文内容主要从ARM架构、C和Java如何避坑 、等方面详细讲解。
Sora是春节期间OpenAI发布的产品,主要是通过文字描述生成视频,通过大规模视频数据训练而成的生成模型,当前还没开放试用。
今天给大家整理一些小编经常学习和访问的学习网站,供大家参考学习。
通过ECS实例快速发现操作系统内部的问题,并给出对应的修复方案。
2022年2月,基于倚天弹性计算的产品实例正式对外进行邀测。经过大半年的时间,在2022年云栖大会上,ECS倚天实例正式商业化。在宣布倚天商业化的同时,已经经历了阿里巴巴电商、双十一等流量洪峰的考验,包括邀测的内外部头部客户业务。
今天分享的内容来自阿里云智能解决方案架构师冯英飞的“芯片竞争格局及最佳匹配场景”。本文主要从ARM芯片市场竞争与生态分析、倚天竞争力分析以及优势业务场景介绍这三个内容进行讲解。
本期为HelloGitHub 年度盘点,为了满足不同读者的需求,作者将内容分为 Top10 和 精选 两部分
艾伦人工智能研究所(Allen Institute for AI,简称 AI2)宣布推出一个名为 OLMo 7B 的新大语言模型,并开源发布了预训练数据和训练代码。OLMo 7B 被描述为 “一个真正开放的、最先进的大型语言模型”。
用户可以通过FastGPU的命令行,快速地部署云上GPU集群,管理资源的生命周期。还可以便捷地为集群安装深度学习环境,在集群运行代码,查看运行日志以及释放资源。
AIACC-AGSpeed(简称AGSpeed)专注于优化PyTorch深度学习模型在阿里云GPU异构计算实例上的计算性能,相比原始的神龙AI加速引擎AIACC,可以实现无感的计算优化性能。本文为您介绍安装和使用AGSpeed的方法。
AIACC-ACSpeed(简称ACSpeed)作为阿里云自研的AI训练加速器,在提高训练效率的同时能够降低使用成本,可以实现无感的分布式通信性能优化。ACSpeed软件包中已为您提供了适配DDP的示例代码,您可以参考本文快速体验使用ACSpeed进行模型分布式训练的过程以及性能提升效果。
在数据领域,AI 正逐步重塑数据处理和分析的各个环节,从 ETL、数据治理到数据分析和消费方式均会发生根本性变化。Kyligence 联合创始人 & CEO,Apache 顶级开源项目。
本文展示了AIACC-ACSpeed的部分性能数据,相比较通过原生DDP训练模型后的性能数据,使用AIACC-ACSpeed训练多个模型时,性能具有明显提升。
g8a实例:高性价比X86服务器,搭载最新CIPU架构,提供100G*2网络带宽和eRDMA支持。基于AMD Genoa平台,主频2.7/3.7GHz,专为性能、成本和稳定性需求设计。适用于通用应用、AI推理训练、高清视频处理等场景。实例性能提升25%,性价比提升15%,内置安全芯片,支持可信计算和机密计算。
AIACC-ACSpeed专注于分布式训练场景的通信优化库,通过模块化的解耦优化设计,实现了分布式训练在兼容性、适用性和性能加速等方面的升级。本文为您介绍安装和使用AIACC-ACSpeed v1.1.0的方法。
最近,Meta基础人工智能研究(FAIR)团队发布了名为Branch-Train-MiX (BTX)的方法,可从种子模型开始,该模型经过分支,以高吞吐量和低通信成本的并行方式训练专家模型。Meta FAIR的成员之一Jason Weston在其X上发文介绍了这一进展。
本文展示了AIACC-AGSpeed(简称AGSpeed)的部分性能数据,相比较通过PyTorch原生Eager模式训练模型后的性能数据,使用AGSpeed训练多个模型时,性能具有明显提升。
在处理大语言模型任务中,您可以根据实际业务部署情况,选择在不同环境(例如GPU云服务器环境或Docker环境)下安装推理引擎DeepGPU-LLM,然后通过使用DeepGPU-LLM工具实现大语言模型(例如Llama模型、ChatGLM模型、百川Baichuan模型或通义千问Qwen模型)在GPU上的高性能推理优化功能
Deepnccl是为阿里云神龙异构产品开发的用于多GPU互联的AI通信加速库,能够无感地加速基于NCCL通信算子调用的分布式训练或多卡推理等任务。本文主要介绍在Ubuntu或CentOS操作系统的GPU实例上安装和使用Deepnccl的操作方法。
使用云服务器ECS,让家庭网络可以被外部网络访问。不在家时,也可以读取备份资料。
美国加利福尼亚州圣克拉拉 —— NVIDIA 今日宣布,将于 3 月 18 日至 21 日在圣何塞会议中心举办 GTC 2024 大会。预计将有超 30 万人亲临现场或线上注册参会。
热迁移分为热迁移和冷迁移,冷迁移过程中有一段明显的时间VM的服务不可用,而热迁移的服务的服务暂停时间非常短。热迁移过程中无需关闭或者长时间暂停VM,VM保持正常运行,只有在热迁移临近结束时有一个非常短暂的停机切换时间。热迁移可保证了VM服务的可用性,提升业务的连续性和用户体验。
AIACC-Inference(AIACC推理加速)支持优化基于TensorFlow和可导出ONNX格式的框架搭建的模型,能显著提升推理性能。本文介绍如何自动安装AIACC-Inference(AIACC推理加速)并测试demo。
倚天ECS是阿里云基于平头哥自研数据中心芯片倚天710推出arm架构实例,采用armv9架构,支持SM3/SM4指令,可以加速国密算法性能。本文基于OpenSSL 3.2和Tongsuo 实测对比了倚天ECS g8y实例和Intel g7 实例国密性能。为用户选择ECS提供参考。
TensorFlow目前进行数据分布式训练的主流方式是Horovod,AIACC-Training 1.5支持使用Horovod API兼容的方式对TensorFlow分布式训练进行加速。本文为您介绍使用AIACC-Training TensorFlow版的具体操作及可能遇到的问题。
幻兽帕鲁联机服务器搭建步骤,全程无需手动配置参数,3分钟完成搭建。
由于MXNet支持KVStore和Horovod两种分布式训练方式,因此AIACC-Training 1.5能够支持使用KVStore的方式对MXNet分布式训练进行加速,同时支持Horovod的分布式训练方式,并且能够无缝兼容Horovod的API版本。
很难想象:一个每月运行成本不到 50 美元(约人民币 358 元)的网站,是如何做到收入 2.3 万美元(约人民币 16.4 万元)的?尤其是,这个网站只有创始人一个人在经营管理。
AIACC-Inference(AIACC推理加速)支持优化基于Torch框架搭建的模型,能够显著提升推理性能。本文介绍如何手动安装AIACC-Inference(AIACC推理加速)Torch版并提供示例体验推理加速效果。