![个人头像照片](https://ucc.alicdn.com/avatar/7g37wk3ud73ho_904d2d2e6e384213b665036a6056f4d6.jpg)
公众号: 可编程芯片开发。 从事可编程芯片开发,接口开发,硬件系统开发十余年。熟悉FPGA,单片机,瑞芯微RK3588,dsp,simulink电路仿真,Multisim电路仿真等
本课题基于MATLAB2022a的Simulink平台,构建并仿真了天线方位角位置控制系统。通过零极点配置法整定PID控制器参数,实现对天线方位角的精确控制。系统由天线驱动装置、角度传感器、PID控制器和电机驱动电路组成,确保天线快速准确地跟踪设定方位角。PID控制器综合比例、积分、微分三个环节,优化响应速度、稳定性和准确性,适用于无线通信、雷达跟踪等领域。
本课题基于SVPWM的飞轮控制系统的Simulink建模与仿真,利用MATLAB2022a实现。SVPWM通过在αβ坐标系中表示三相电压矢量,精确追踪圆形电压空间矢量轨迹,提高直流母线电压利用率和输出电压谐波质量,增强电机转矩密度和效率。仿真结果显示系统性能优越,能量转换效率高,谐波含量低,电机运行平稳,响应快速,适用于储能需求动态调整,显著提升飞轮储能系统的整体性能。
本课题基于PSO优化的PV光伏发电系统Simulink建模与仿真,采用MATLAB2022a实现。通过Simulink函数嵌入模块调用MATLAB编写的PSO算法,实现高效MPPT控制。系统在光照和温度变化下能实时追踪最大功率点,显著提升发电效率。仿真结果展示了系统的稳定性和鲁棒性,适用于复杂环境。核心程序包括适应度评估、粒子位置和速度更新等步骤,确保了系统的高效运行。
本研究利用Simulink对模拟锁相环(PLL)和数字锁相环(DPLL)进行建模,通过对比两者的收敛曲线及锁定频率值,分析其性能差异。系统采用MATLAB2022a版本,详细介绍了PLL和DPLL的工作原理,涵盖鉴相器、滤波器及振荡器等关键组件的功能与数学描述。
本课题基于模糊PID控制器对无刷直流电机(BLDCM)进行速度控制的Simulink建模与仿真。该系统融合了传统PID控制与模糊逻辑的优势,提高了BLDCM的速度动态响应、抗干扰能力和稳态精度。通过模糊化、模糊推理和解模糊等步骤,动态调整PID参数,实现了对电机转速的精确控制。适用于多种工况下的BLDCM速度控制应用。
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。
本项目基于MATLAB2022a的Simulink平台,构建了四旋翼无人机的PID控制模型,实现了无人机升空、下降及再次升空的飞行仿真,并生成了VR虚拟现实动画。通过调整PID参数,优化了无人机的姿态控制性能,展示了无人机在三维空间中的动态行为。
本课题使用Simulink实现风轮机发电系统的建模与仿真,涵盖风速模型(基本风、阵风、阶跃风、随机风)、风力机模型及飞轮储能模块。采用MATLAB 2022a进行仿真,详细介绍了各风速成分的数学模型及其组合模型,阐述了风力机从风能捕获到电能输出的全过程,为风力发电系统的设计和优化提供了理论基础和技术支持。
本课题在Simulink中构建了基于粒子群优化(PSO)的最大功率点跟踪(MPPT)光伏发电系统,包括光伏模块、MPPT模块、PSO优化模块及电路模块。PSO模块采用Matlab编程并在Simulink中调用。系统通过优化算法在复杂环境下实现高效MPPT。仿真结果显示该系统具有良好的性能。版本:MATLAB2022a。
本项目基于SEIR模型,利用MATLAB 2022a对传染病传播过程进行建模与仿真。SEIR模型将人群分为易感者(S)、暴露者(E)、感染者(I)和康复者(R),通过四类人群间的转换描述传染病动态。通过设定初始条件与参数,并采用ODE求解器进行模拟,生成了不同状态人群随时间变化的曲线图,展示了感染趋势及防控效果。系统仿真结果显示了模型的有效性和预测能力。
通过Simulink内嵌Matlab实现自适应MPC控制器,结合系统模型与控制对象完成仿真。面对日益复杂的工业过程,AMPC融合MPC与自适应控制优势,依据系统变化自动调节参数,确保优化控制及鲁棒性。MPC通过预测模型优化控制序列;自适应控制则动态调整控制器以应对不确定性。AMPC适用于多变环境下高性能控制需求,如化工、航空及智能交通系统。[使用MATLAB 2022a]
本项目构建了一个基于模糊控制算法的倒立摆控制系统,利用MATLAB 2022a实现了从不稳定到稳定状态的转变,并输出了相应的动画和收敛过程。模糊控制器通过对小车位置与摆的角度误差及其变化量进行模糊化处理,依据预设的模糊规则库进行模糊推理并最终去模糊化为精确的控制量,成功地使倒立摆维持在直立位置。该方法无需精确数学模型,适用于处理系统的非线性和不确定性。
在MATLAB 2022a的Simulink环境中构建智能电网PQ并网控制器模型,实现对并网三相电压电流的精确控制及其收敛输出。PQ控制器根据实时需求调节有功与无功功率,确保电力系统稳定。通过测量、计算、比较、控制和执行五大环节,实现PQ参考值的跟踪,保证电能质量和系统稳定性。广泛适用于可再生能源并网场景。
本研究实现PID控制器参数(kp, ki, kd)的自适应调整,达成最优控制并展示参数收敛过程。MATLAB2022a环境下仿真结果显示,参数经调整后趋于稳定,控制器输出平滑,误差显著降低。自适应PID通过实时监测系统性能自动优化参数,有效应对不确定性,维持系统稳定及高性能。采用不同优化算法调整PID参数,确保最佳控制效果。
本课题研究配电系统中分布式电源接入后的自动重合闸问题,着重分析非同期重合闸带来的冲击电流及其影响。通过Simulink搭建模型,仿真不同位置及容量的分布式电源对冲击电流的影响,并对比突发性和永久性故障情况。利用MATLAB2022a进行参数设置与仿真运行,结果显示非同期重合闸对系统安全构成挑战,需通过优化参数提升系统性能。
本研究介绍风力发电原理与系统模型,使用MATLAB 2022a进行性能仿真。风力通过风轮转化为电能,涉及贝努利定理及叶素理论。仿真展示了风速与输出功率间的关系,包括风电利用系数、切入切出控制与MPPT控制效果。当风速超过25m/s时,系统自动停机保护设备。MPPT算法确保了在变化风速下获得最大功率。
- **课题概述**: 实现了PID与模糊PID控制器的Simulink建模,对比二者的控制响应曲线。 - **系统仿真结果**: 模糊PID控制器展现出更快的收敛速度与更小的超调。 - **系统原理简介**: - **PID控制器**: 一种广泛应用的线性控制器,通过比例、积分、微分作用控制偏差。 - **模糊PID控制器**: 结合模糊逻辑与PID控制,动态调整PID参数以优化控制性能。 - **模糊化模块**: 将误差和误差变化率转换为模糊量。 - **模糊推理模块**: 根据模糊规则得出控制输出。 - **解模糊模块**: 将模糊控制输出转换为实际控制信号。
**摘要** 探索MATLAB2022a模拟6-DOF Stewart平台,模拟动态变化及伺服角度。平台实现XYZ平移及绕XYZ轴旋转。结构含中心动平台、固定基座及6个伺服驱动的伸缩连杆。运动学原理涉及球铰/虎克铰的转动自由度。通过动力学分析解决输入力矩到平台加速度的转换。核心算法与模型揭示了平台的精密定位能力。仿真结果显示动态性能。
**摘要:** 构建基于PID的直流电机位置控制系统,利用PID的简易性和有效性实现精确控制。在MATLAB2022a中进行系统仿真,展示结果。控制器基于误差(e(t))生成控制信号(u(t)),由比例(K_p)、积分(K_i)和微分(K_d)项构成。系统采用三层控制环:位置环设定速度参考,速度环调节实际速度,电流环确保电流匹配,以达成期望位置。
**摘要:** 构建基于IEEE13节点的HIF模型Simulink仿真,模拟谐波影响。系统设定为110V/60Hz,使用MATLAB2022a。HIF模型在节点注入谐波,分析其在电网中的传播。故障电流计算公式涉及相电压、地电压和故障阻抗。系统响应通过频率域分析,利用卷积计算X(f)=S(f)*G(f),检测HIF事件。研究旨在改进故障检测,应对传统保护策略失效的情况。
该文主要介绍了一个基于PID-bang-bang控制算法的卫星姿态控制系统。在MATLAB2022a中进行了仿真,生成了控制收敛曲线和姿态调整动画。系统通过PID控制器减少误差,结合Bang-Bang控制实现快速响应。核心程序涉及卫星位置、推力向量的计算及动画绘制。PID控制器利用比例、积分、微分项调整输出,Bang-Bang控制则在误差超出阈值时提供即时修正。两者结合以平衡控制精度和响应速度,适应卫星姿态的精确调节需求。
**摘要:** 基于BP算法的SAR成像研究,利用MATLAB2022a进行仿真。SAR系统借助相对运动合成大孔径,提供高分辨率图像。BP算法执行回波数据预处理、像素投影及图像重建,实现精确成像。优点是高精度和强适应性,缺点是计算量大、内存需求高。代码示例展示了回波生成、数据处理到插值显示的全过程。
电力系统可靠性评估研究,聚焦于LOLP(电力不足概率)和EDNS(期望缺供电量)的模拟分析。使用MATLAB2022a进行基于蒙特卡洛的仿真,模拟单线及多线故障,分析连锁效应。程序中通过随机断开线路,计算潮流,判断越限并用PSO优化。结果显示,LOLP和EDNS增加时,故障概率降低,但小概率大影响事件概率上升。以IEEE24-RTS系统为案例,考虑元件失效的马尔科夫过程,不考虑3个及以上元件失效情况,因为可能导致系统大规模崩溃。仿真步骤包括随机线路断开、故障分析和稳定性评估,涉及信息节点概率计算、潮流计算及优化决策。
该文探讨了使用PSO(粒子群优化)算法优化PID控制器参数的方法。通过PSO迭代,不断调整PID控制器的Kp、Ki、Kd增益,以减小控制误差。文中提供了MATLAB2022a版本的核心代码,展示了参数优化过程及结果。系统仿真图像显示了参数随迭代优化的变化。PID控制器结合PSO算法能有效提升控制性能,适用于复杂系统的参数整定,未来研究可关注算法效率提升和应对不确定性。
**摘要:** 使用MATLAB2022a,实施高通滤波对ECG信号预处理,消除基线漂移,随后分析心率。系统仿真展示效果,核心代码涉及IIR HPF设计,如二阶滤波器的差分方程。通过滤波后的信号,检测R波计算RR间期,从而得到心率。滤波与R波检测是心电生理研究的关键步骤,平衡滤波性能与计算资源是设计挑战。
在MATLAB 2022a的Simulink中,构建了模糊PID和标准PID控制器模型,对比两者控制输出。模糊控制器采用模糊逻辑处理误差和误差变化率,通过模糊化、推理和去模糊化调整PID参数。模糊PID能更好地应对非线性和不确定性,而标准PID虽然简单易实现,但对复杂系统控制可能不足。通过仿真分析,可选择适合的控制器类型。
**摘要:** 该研究利用遗传算法(GA)对混合发电系统进行优化配置,旨在最小化风能、太阳能及电池储能的成本并提升系统性能。MATLAB 2022a用于实现这一算法。仿真结果展示了一系列图表,包括总成本随代数变化、最佳适应度随代数变化,以及不同数据的分布情况,如负荷、风速、太阳辐射、弃电、缺电和电池状态等。此外,代码示例展示了如何运用GA求解,并绘制了发电单元的功率输出和年变化。该系统原理基于GA的自然选择和遗传原理,通过染色体编码、初始种群生成、适应度函数、选择、交叉和变异操作来寻找最优容量配置,以平衡成本、效率和可靠性。
在MATLAB 2022a的Simulink环境中,构建并仿真了一个双摆运动模型,展示运动效果和轨迹。双摆系统由两个质量不等、长度和转动惯量各异的摆锤构成,受重力影响作非线性周期运动。拉格朗日方程用于描述其动力学,广义坐标θ1和θ2定义系统状态。系统动能T涉及摆锤质量和角度,体现了系统的非线性特性。该模型应用于物理、工程和生物学中的非线性动力学研究。
**摘要:** 使用MATLAB2022a,基于UKF的电池SOC估计仿真比较真实值,展示非线性滤波在电动车电池管理中的效用。电池电气模型描述电压、电流与SoC的非线性关系,UKF利用无迹变换处理非线性,通过预测和更新步骤实时估计SoC,优化状态估计。尽管UKF有效,但依赖准确模型参数。
该文主要介绍了基于6个IGBT的全桥电路在MATLAB2022a中的Simulink建模与仿真。文中展示了系统仿真结果的多张图片,并简述了三相全桥逆变器的工作原理,包括电路结构和控制IGBT开关状态的方法。全桥电路应用于变频驱动、逆变器、电动汽车和可再生能源领域,实现高效能量转换和精确控制。通过PWM调制,可适应不同应用需求。
使用MATLAB2022a和Simulink构建的DC电机模型进行仿真,展示了电机在240V电枢电压和150V励磁绕组输入下的性能。仿真输出包括转速、电枢及励磁电流、电磁转矩随时间的变化。结果以图像形式呈现,揭示了电机在洛伦兹力和电磁感应定律作用下的工作原理,通过电流与磁场的交互转换电能为机械能。直流电机借助换向器维持稳定的电磁转矩,并遵循法拉第电磁感应定律和楞次定律。
该课题在MATLAB2022a中建立了车辆行驶控制运动学模型并进行仿真,展示车辆动态行驶过程。系统仿真结果包含四张图像,显示了车辆在不同时间点的位置和轨迹。核心程序定义了车辆参数和初始条件,使用ode45求解器模拟车辆运动。车辆运动学模型基于几何学,研究车辆空间位姿、速度随时间变化,假设车辆在平面运动且轮胎无滑动。运动学方程描述位置、速度和加速度关系,模型预测控制用于优化轨迹跟踪,考虑道路曲率影响,提升弯道跟踪性能。
该文探讨了基于PI控制的PMSM永磁同步电机Simulink建模与仿真,采用矢量控制策略,不依赖Simulink内置模型。在MATLAB2022a环境下,建立了电机数学模型,简化了复杂的电磁关系。PI控制器用于实现电流解耦控制,提高动态响应。控制系统通过PI调节直轴和交轴电流,经坐标变换和PWM调制驱动电机运行,实现高性能闭环控制。
该文主要介绍了一个基于双闭环PI和SVPWM技术的PMSM控制器的Simulink建模与仿真项目。系统包含逆变桥、PMSM电机、变换器、SVPWM、PI控制器等模块,实现了转速和电流的快速稳定控制。文章提供了系统仿真的图表,并详细阐述了双闭环PI控制器设计及SVPWM技术。在控制流程中,系统不断采集反馈信息,通过PI控制器调整直轴和交轴电流,经SVPWM调制后驱动电机运行,确保高效精确的电机控制。使用的工具为MATLAB2022a。
该文探讨了Flyback反激型电路的建模与仿真,这种电路常见于低至中功率应用,以其简单结构和低成本著称。文章详细介绍了电路原理、数学建模及仿真方法,包括储能和释能阶段的工作过程。使用MATLAB2022a进行仿真,并提到了电路搭建、参数设置及优化设计步骤。通过本文,读者可深入了解Flyback电路,为未来研究和优化设计打下基础,随着技术进步,该电路将在更多领域发挥潜力。
该文主要介绍了基于LQR控制算法的电磁减振控制系统在MATLAB2022a中的Simulink建模与仿真。文章展示了系统仿真输出的控制器收敛曲线,并提供了相关图像来解释系统原理。LQR算法通过优化二次成本函数实现振动抑制,尤其适用于电磁减振系统,利用电磁执行机构动态调整力,高效抑制振动。文中附有关键模型和原理图。
基于simulink的简易电机电力系统建模与仿真性能分析