90_推理优化:性能调优技术
随着大型语言模型(LLM)规模的不断扩大和应用场景的日益复杂,推理性能已成为制约模型实际部署和应用的关键因素。尽管大模型在各项任务上展现出了令人惊艳的能力,但其庞大的参数量和计算需求也带来了严峻的性能挑战。在资源受限的环境中,如何在保持模型效果的同时,最大化推理性能,成为了研究人员和工程师们亟待解决的核心问题。
76_混合云环境:AWS与GCP互联
在当今数字化转型的浪潮中,混合云架构已成为企业IT基础设施的重要组成部分。截至2025年第一季度,全球云基础设施市场由三大云服务提供商主导:亚马逊云服务(AWS)占29%市场份额,微软Azure占22%,谷歌云平台(GCP)占12%。这三大提供商合计占据全球云市场约63%的份额。在这种情况下,企业越来越多地采用混合云策略,尤其是同时使用AWS和GCP这两个领先平台。
47_历史里程碑:从ELIZA到Transformer
在当今的数字时代,我们已经习惯于与智能助手对话、向大语言模型提问,甚至依赖它们生成创意内容。然而,这看似理所当然的人机对话能力,实际上经历了长达半个多世纪的曲折发展历程。从1966年麻省理工学院的简陋程序,到2017年Google提出的革命性架构,聊天AI的演变不仅是技术的进步,更是人类对自身语言本质探索的缩影。
61_自定义基准:构建专属评测体系
在大型语言模型(LLM)快速发展的今天,通用基准测试如MMLU、C-Eval等已成为评估模型能力的重要工具。然而,随着LLM在各个行业的深度应用,通用基准往往无法准确反映模型在特定领域、特定任务上的真实表现。2025年,构建企业或组织专属的自定义评测基准已成为大模型落地应用的关键环节。
当AI学会跑跳抓:来云栖大会,参加一场“具身智能运动会”
一副AI眼镜帮你实时智能识别、一只机器狗陪你跑跨栏、一条机械臂听你指挥、一场与机器人的点球大战——这可不是科幻电影,这是2025云栖大会即将上演的现实。
《当普通人也能当侦探:一个AI小工具的诞生》
我计划参加魔搭(ModelScope)平台上的Qwen-Coder比赛,通过制作一段视频,分享我开发人脸识别工具的过程。这段视频将以轻松幽默的方式,结合生活中的真实案例,展现如何利用AI技术解决普通人面临的隐私与安全问题。
Gemma 3n正式版开源:谷歌全新端侧多模态大模型,2GB 内存就能跑,重点提升编码和推理能力!
6月底,Google正式开源发布了全新端侧多模态大模型 Gemma 3n!相较此前的预览版,最新的 Gemma 3n 完整版进一步提升性能表现,支持在 2GB 内存的硬件上本地运行,重点提升了编码和推理方面的能力。
文心4.5系列模型,正式开源!
6月30日,百度文心大模型4.5正式开源,魔搭社区在开源首日快速接入文心大模型,提供真正可用、好用、可落地的大模型解决方案,现已面向广大企业、开发者下载体验!
通义点金案例分享:表格修订
本文介绍了在通义点金平台搭建知识库时遇到的表格解析问题及解决方案。问题表现为表格数据被独立存储为chunk,缺少前后说明文字和表名信息,导致大模型回答错乱。解决方法是通过API将前后chunk内容合并到table类型的chunk中,补充表名和说明信息。具体步骤包括获取文档chunk列表、按顺序排序、修订table类型chunk并更新。示例展示了修订前后效果,同时说明了点金平台近期更新对部分问题的优化情况。
聚焦“以技术集成支撑单亩价值创造”与“增加值分配机制区块链存证确权”两大核心本质
“振兴链-技术集成科技小院”以技术集成与区块链为核心,推动农业现代化。通过多维度技术整合(如精准农业、物联网等),突破资源约束,最大化单亩产值;同时利用区块链确权存证,建立透明分配机制,解决传统农业中收益不均问题。技术赋能生产,制度重塑分配,实现效率与公平的平衡,助力乡村振兴与产业升级。典型场景显示,该模式可显著提升单亩价值并确保增值公平分配。
超强辅助!Bolt.diy 自然语言建站工具一键云端部署方案
Bolt.diy 是一款从创意到部署的极速开发工具,支持多语言模型(如 OpenAI、DeepSeek 等)灵活适配,满足不同任务需求。其模块化架构提供高度定制化能力,可扩展自定义服务与私有模型。全栈开发流程覆盖代码生成、调试、版本管理到一键部署,内置数据库管理与 API 自动生成功能。智能化辅助工具实时分析代码错误并提供建议,帮助开发者高效理解复杂项目。基于云原生平台 CAP 构建,支持快速部署与实时预览,适用于快速原型设计、教育及企业级开发等场景。
ACTalker:港科大联合腾讯清华推出,多模态驱动的说话人视频生成神器
ACTalker是由香港科技大学联合腾讯、清华大学研发的端到端视频扩散框架,采用并行Mamba结构和多信号控制技术,能生成高度逼真的说话人头部视频。
Runway Gen-4:AI视频生成新纪元!高保真特效一键生成影视级内容
Runway Gen-4是新一代AI视频生成模型,通过参考图和文字指令即可生成具有物理真实感、叙事连贯性的高质量视频内容,支持与实拍素材无缝融合。
OpenDeepSearch:搜索引擎革命!这个开源深度搜索工具让AI代理直接读懂网页,复杂问题一键拆解
OpenDeepSearch是基于开源推理模型的深度搜索工具,通过语义重排和多源整合优化检索效果,支持与AI代理无缝集成,提供快速和专业两种搜索模式。
SmolDocling:256M多模态小模型秒转文档!开源OCR效率提升10倍
SmolDocling 是一款轻量级的多模态文档处理模型,能够将图像文档高效转换为结构化文本,支持文本、公式、图表等多种元素识别,适用于学术论文、技术报告等多类型文档。
Gemma3:Google开源多模态神器,轻量高效,精通140+语言,解锁文本与图像任务
在当今快速发展的 AI 领域,多模态模型正逐渐成为推动技术革新的重要力量。Google 最新推出的 Gemma 3 模型,凭借其轻量级、多模态的特性,为文本生成和图像理解任务带来了全新的可能性。它不仅支持文本和图像输入,还具备强大的语言处理能力,覆盖超过 140 种语言,并且能够在资源有限的设备上高效运行。从问答到摘要,从推理到图像分析,Gemma 3 正在重新定义 AI 模型的边界,为开发者和研究人员提供了一个极具潜力的工具。
VideoPainter:开源视频修复神器!双分支架构一键修复,对象身份永久在线
VideoPainter 是由香港中文大学、腾讯ARC Lab等机构联合推出的视频修复和编辑框架,基于双分支架构和预训练扩散模型,支持任意长度视频的修复与编辑,具备背景保留、前景生成、文本指导编辑等功能,为视频处理领域带来新的突破。
TrajectoryCrafter:腾讯黑科技!单目视频运镜自由重构,4D生成效果媲美实拍
TrajectoryCrafter 是腾讯与香港中文大学联合推出的单目视频相机轨迹重定向技术,支持后期自由调整视频的相机位置和角度,生成高质量的新型轨迹视频,广泛应用于沉浸式娱乐、创意视频制作等领域。
AppAgentX:告别重复点击!自我进化式GUI代理自动生成高级操作,效率翻倍
AppAgentX 是西湖大学推出的新型自我进化式 GUI 代理框架,通过记忆和进化机制提升智能手机交互的效率和智能性,支持复杂任务和跨应用操作,显著优于现有方法。
SAFEARENA: 评估自主网络代理的安全性
基于大语言模型的智能体在解决基于网络的任务方面正变得越来越熟练。随着这一能力的增强,也随之带来了更大的被恶意利用的风险,例如在在线论坛上发布虚假信息,或在网站上销售非法物质。为了评估这些风险,我们提出了SAFEARENA,这是第一个专注于故意滥用网络代理的基准测试。SAFEARENA包含四个网站上共计500个任务,其中250个是安全的,250个是有害的。我们将有害任务分为五类:虚假信息、非法活动、骚扰、网络犯罪和社会偏见,旨在评估网络代理的真实滥用情况。我们对包括GPT-4o、Claude-3.5 Sonnet、Qwen-2-VL 72B和Llama-3.2 90B在内的领先基于大语言模型的网
Shandu:开源AI研究黑科技!自动挖掘多层级信息,智能生成结构化报告
Shandu 是一款开源的 AI 研究自动化工具,结合 LangChain 和 LangGraph 技术,能够自动化地进行多层次信息挖掘和分析,生成结构化的研究报告,适用于学术研究、市场分析和技术探索等多种场景。
AI-Infra-Guard:腾讯开源AI基础设施安全评估神器,一键扫描漏洞
AI-Infra-Guard 是腾讯开源的高效、轻量级 AI 基础设施安全评估工具,支持 28 种 AI 框架指纹识别和 200 多个安全漏洞数据库,帮助用户快速检测和修复 AI 系统中的安全风险。
AIMv2:苹果开源多模态视觉模型,自回归预训练革新图像理解
AIMv2 是苹果公司开源的多模态自回归预训练视觉模型,通过图像和文本的深度融合提升视觉模型的性能,适用于多种视觉和多模态任务。
PySpur:零代码构建AI工作流!开源可视化拖拽平台,支持多模态与RAG技术
PySpur 是一款开源的轻量级可视化 AI 智能体工作流构建器,支持拖拽式界面,帮助用户快速构建、测试和迭代 AI 工作流,无需编写复杂代码。它支持多模态数据处理、RAG 技术、文件上传、结构化输出等功能,适合非技术背景的用户和开发者快速上手。
FlashMLA:DeepSeek最新开源!MLA解码内核让NVIDIA Hopper开启性能狂暴模式,推理速度飙升至3000GB/s
FlashMLA 是 DeepSeek 开源的高效 MLA 解码内核,专为 NVIDIA Hopper 架构 GPU 优化,支持 BF16 精度和页式 KV 缓存,适用于大语言模型推理和自然语言处理任务。
Sitcom-Crafter:动画师失业警告!AI黑科技自动生成3D角色动作,剧情脚本秒变动画
Sitcom-Crafter 是一款基于剧情驱动的 3D 动作生成系统,通过多模块协同工作,支持人类行走、场景交互和多人交互,适用于动画、游戏及虚拟现实等领域。
HealthGPT:你的AI医疗助手上线了:支持X光到病理切片,诊断建议+报告生成全自动
HealthGPT 是浙江大学联合阿里巴巴等机构开发的先进医学视觉语言模型,具备医学图像分析、诊断辅助和个性化治疗方案建议等功能。
SPO来袭:Prompt工程师90%不存在了?AI自动优化时代开启!
当你点进这个标题时内心是怎样复杂的心情,质疑,鄙夷,或者是惊讶?这也正是我们最初点开这篇论文时的心情。然而, 在完成项目测试后, 我们瘫坐在椅子上, 默默打下了 'Prompt工程师,不存在' 这几个
DragAnything:视频PS来了!开源AI控制器让视频「指哪动哪」:拖拽任意物体轨迹,多对象独立运动一键生成
DragAnything 是快手联合浙江大学和新加坡国立大学推出的基于实体表示的可控视频生成方法,支持多实体独立运动控制、高质量视频生成,并在 FID、FVD 和用户研究等评估指标上达到最佳性能。
《显卡 4090 就能跑!小白也能炼出私有大模型》
大模型微调是AI落地的关键技术,通过定向训练让通用模型在特定领域“从会到精”。本文详解微调原理、LoRA/QLoRA等高效方法,并提供评估与实操建议,助力新手快速上手,实现低成本、高精度的模型定制。
构建AI智能体:九十、图解大模型核心三大件 — 输入编码、注意力机制与前馈网络层
本文深入解析了大模型三大核心技术:输入编码、多头自注意力机制和前馈网络层,从应用视角阐述了它们的工作原理和协同效应。输入编码负责将文本转换为富含语义和位置信息的数学表示;多头自注意力机制通过多专家团队模式建立全局依赖关系,解决长距离依赖问题;前馈网络层则通过非线性变换进行深度语义消歧。文章通过可视化示例展示了词向量的语义关系建模、注意力权重的分布模式以及前馈网络的语义过滤功能,形象地说明了大模型如何通过这三层架构实现"广泛联系-深度加工"的认知过程。
C 语言微服务架构实践:从模块化到轻量级分布式的探索
本文探讨C语言在微服务架构中的实践路径,通过“模块化拆分+进程通信”实现轻量级分布式系统,适用于嵌入式与物联网等资源受限场景,结合MQTT协议支持跨设备协作,虽缺乏高级特性,但凭借高效、低耗优势,可作为特定场景下微服务的有力补充。
C 语言高效学习:从入门到嵌入式的科学路径
C语言是嵌入式与底层开发的基石。科学学习路径分四阶:入门打基础,深化指针内存,项目实战练工程,进阶嵌入式。掌握文件持久化、并发编程,融合硬件应用,实现从新手到工程师的跃迁,彰显其高性能、强控制与广生态的持久生命力。
Java 实用工具类使用指南:提升开发效率的核心技巧
本文系统梳理Java开发中10类常用工具类,涵盖字符串、日期、集合、加密、文件、数学、反射、IO流及网络操作,详解核心方法、使用场景与注意事项,结合案例帮助开发者提升效率、避免重复造轮子,助力写出更稳定、可读性更强的代码。
Python 项目实战入门:从 0 到 1 搭建简易学生信息管理系统
本文以简易学生信息管理系统为例,详解Python Web项目从需求分析、技术选型到编码部署的完整流程。采用Flask+SQLite+Bootstrap轻量栈,实现增删改查与Excel导出,助初学者快速掌握开发逻辑与实战技能。
0-1教程 ChatGPT Apps Store应用提交教程——和MCP开发部署
本文以“A2Z Bill Agent”为例,详细介绍如何提交应用至ChatGPT App Store。涵盖准备App图标、MCP服务器配置、域名验证、测试用例编写、截图要求等全流程,助开发者高效完成上架。
DeepSeek-V3.1 发布,迈向 Agent 时代的第一步
今日发布DeepSeek-V3.1,支持混合推理架构,提升思考效率与Agent能力。编程与搜索智能体表现显著增强,API已升级并支持Anthropic格式,模型开源,上下文扩展至128K。
ChatPPT+魔搭社区:MCP 2.0全面升级!
ChatPPT MCP2.0正式发布,联合魔搭ModelScope推出云端智能体服务,支持生成、编辑、演讲、动画等全链路功能,开放Streamable HTTP协议与本地Stdio双模式,已接入20+平台,服务300+开发者。
Ling-1T,智渊、思简
今天,我们正式发布Ling 2.0系列的第一款 旗舰非思考模型 - 拥有万亿参数的Ling-1T。推理,是智能的核心表达,更是通用智能体的认知基石。因此,我们持续扩展Ling 2.0 系列模型的自然语言推理能力。Ling-1T沿用 Li…
138_绿色计算:碳排放优化 - 估算部署的碳足迹与LLM环境友好型部署最佳实践
随着大语言模型(LLM)在各个行业的广泛应用,其计算需求和环境影响正日益受到关注。根据最新研究,训练一个大型LLM模型可能产生数百吨二氧化碳当量的排放,这相当于普通家庭几十年的碳足迹。在全球气候变化和可持续发展的背景下,如何优化LLM部署的碳足迹,实现环境友好型AI应用,已成为行业面临的重要挑战。
115_LLM基础模型架构设计:从Transformer到稀疏注意力
大型语言模型(LLM)的架构设计是其性能的核心决定因素。从2017年Transformer架构的提出,到如今的稀疏注意力和混合专家模型,LLM架构经历了快速的演进。本文将全面探讨LLM基础架构的设计原理,深入分析Transformer的核心机制,详细介绍稀疏注意力、MoE等创新架构,并展望未来架构发展方向。通过数学推导和实践案例,为构建高效、强大的LLM提供全面指导。
59_实时性模型:选择低延迟LLM
在当今快速发展的人工智能领域,大型语言模型(LLM)的应用正迅速渗透到各个行业。随着企业对AI响应速度的要求不断提高,低延迟LLM的选择与优化已成为技术团队面临的关键挑战。实时聊天机器人、智能客服、自动驾驶辅助系统等场景对响应时间提出了极高的要求,毫秒级的延迟差异可能直接影响用户体验和业务效率。2025年,随着推理优化技术的突破性进展,低延迟LLM已不再是难以企及的目标,而是成为实际生产环境中的标准配置。
91_提示注入:安全提示工程
随着大型语言模型(LLM)技术的快速发展和广泛应用,AI系统正以前所未有的方式改变着我们的工作和生活。然而,这种强大的技术也带来了新的安全挑战,其中提示注入(Prompt Injection)攻击已成为最具威胁性的安全问题之一。提示注入攻击通过精心构造的输入,操纵或欺骗AI系统执行非预期行为,可能导致数据泄露、权限绕过、输出不当内容等严重后果
42_大语言模型的计算需求:从GPU到TPU
随着2025年大语言模型技术的持续突破和规模化应用,计算资源已成为推动AI发展的关键驱动力。从最初的CPU计算,到GPU加速,再到专用AI加速器的崛起,大语言模型的计算需求正在重塑全球数据中心的基础设施架构。当前,全球AI半导体市场规模预计在2027年将达到2380亿美元(基本情境)甚至4050亿美元(乐观情境),这一增长背后,是大语言模型对计算能力、内存带宽和能效比的极致追求。