图像搜索

首页 标签 图像搜索
图像搜索产品简单使用
图像搜索(Image Search)以深度学习和机器视觉技术为核心,提取图片内容特征、建立图像搜索引擎,是一款用于图片间相似性检索的平台型产品。用户输入图片,可以快速在图片库中检索到与输入图片相似的图片集合。结合不同的行业和业务场景,图像搜索可广泛的应用于拍照购物、商品推荐、版权保护、图片相似推荐等场景。此片文章简单介绍下图像搜索的开通创建以及使用
使用 PolarDB 开源版 和 imgsmlr 存储图像特征值以及快速的进行图像相似搜索
PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力. 本文将介绍使用 PolarDB 开源版 和 imgsmlr 存储图像特征值以及快速的进行图像相似搜索
沉浸式学习PostgreSQL|PolarDB 4: 跨境电商场景, 快速判断商标|品牌侵权
很多业务场景中需要判断商标侵权, 避免纠纷. 例如 电商的商品文字描述、图片描述中可能有侵权内容. 特别是跨境电商, 在一些国家侵权查处非常严厉. 注册公司名、产品名时可能侵权. 在写文章时, 文章的文字内容、视频内容、图片内容中的描述可能侵权. 例如postgresql是个商标, 如果你使用posthellogresql、postgresqlabc也可能算侵权. 以跨境电商为力, 为了避免侵权, 在发布内容时需要商品描述中出现的品牌名、产品名等是否与已有的商标库有相似. 对于跨境电商场景, 由于店铺和用户众多, 商品的修改、发布是比较高频的操作, 所以需要实现高性能的字符串相似匹配功能.
沉浸式学习PostgreSQL|PolarDB 21,相似图像搜索
传统数据库不支持图像类型, 图像相似计算函数, 图像相似计算操作服, 相似排序操作符. 所以遇到类似的需求, 需要自行编写应用来解决. PG|PolarDB 通过imgsmlr插件, 可以将图像转换为向量特征值, 使用相似距离计算函数得到相似值, 使用索引加速相似度排序, 快速获得相似图片, 实现以图搜图. 也可以通过pgvector插件来存储图片向量特征值, 结合大模型服务(抠图、图像向量转换), 可以实现从图像转换、基于图像的相似向量检索全流程能力.
|
9月前
|
OpenCV(图像处理)-图片搜索
1.知识介绍 Opencv进行图片搜索需要的知识有:特征点匹配+单应性矩阵知识,特征点匹配作者前面文章有记录。 单应性矩阵:两个不同视角上的点所对应的单应性矩阵可以用同一个射影变换来表述可以简单理解为变换矩阵H,x1 = h*x2
免费试用