探索人工智能:从理论到实践的旅程
本文旨在揭示人工智能(AI)的神秘面纱,通过深入浅出的方式引导读者理解AI的基本概念、关键技术以及实际应用。我们将从AI的历史发展谈起,逐步过渡到当前的研究热点和技术挑战,并探讨AI如何在不同行业中发挥作用。文章将结合代码示例,让读者能够直观地感受AI技术的魅力,同时引发对AI伦理和社会影响的思考。无论你是AI领域的初学者还是希望深化理解的专业人士,这篇文章都将为你提供有价值的信息和启发。
图像数据的特征提取与预处理方法,涵盖图像数据的特点、主要的特征提取技术
本文深入探讨了图像数据的特征提取与预处理方法,涵盖图像数据的特点、主要的特征提取技术(如颜色、纹理、形状特征)及预处理步骤(如图像增强、去噪、分割)。同时介绍了Python中常用的OpenCV和Scikit-image库,并提供了代码示例,强调了预处理的重要性及其在提升模型性能中的作用。
从基础到人脸识别与目标检测
前言
从本文开始,我们将开始学习ROS机器视觉处理,刚开始先学习一部分外围的知识,为后续的人脸识别、目标跟踪和YOLOV5目标检测做准备工作。我采用的笔记本是联想拯救者游戏本,系统采用Ubuntu20.04,ROS采用noetic。
颜色编码格式,图像格式和视频压缩格式
(1)RGB和BGR:这是两种常见的颜色编码格式,分别代表了红、绿、蓝三原色。不同之处在于,RGB按照红、绿、蓝的顺序存储颜色信息,而BGR按照蓝、绿、红的顺序存储。
rgb8图像格式:常用于显示系统,如电视和计算机屏幕。
RGB值以8 bits表示每种颜色,总共可以表示256×256×256=16777216种颜色
【AI系统】AI 发展驱动力
AI起源于20世纪50年代,经历起伏后,2016年AlphaGo的胜利重燃公众热情。实际上,AI技术早已在互联网公司广泛应用,如搜索引擎、广告推荐等。机器学习是实现AI的方法之一,深度学习则是机器学习的重要技术,通过神经网络实现。近年来,随着大数据积累、算法进步及算力增强,AI取得了显著成就,特别是在图像识别、自然语言处理等领域。AI系统的设计需考虑数据驱动、算法优化及高性能计算,以适应更大规模、更复杂的应用需求。
【AI系统】AI的领域、场景与行业应用
本文概述了AI的历史、现状及发展趋势,涵盖AI系统的初步设计原则,并深入探讨了AI在计算机视觉、自然语言处理和音频处理三个领域的具体应用。同时,文中还介绍了AI在金融、医疗、教育、互联网及自动驾驶等行业中的广泛应用,强调了AI基础设施的重要性及其对企业竞争力的影响。通过阅读本文,读者不仅可以获得系统的AI知识,还能激发对AI系统研究的兴趣,掌握相关的设计原则与方法。