《探寻计算图奥秘:动态与静态在自然语言处理中的分野》
在自然语言处理(NLP)领域,模型训练依赖计算图这一底层架构。动态计算图以灵活性见长,适合调试与开发,但运行效率较低;静态计算图则以高效性和全局优化能力著称,利于大规模训练和部署,但调试复杂且灵活性受限。两者各有优劣,适用于不同场景:研究初期宜用动态计算图,生产阶段则偏好静态计算图。它们共同推动了NLP技术的发展,为自然语言处理的广泛应用提供了技术支持。
突破!自然语言强化学习(NLRL):一个可处理语言反馈的强化学习框架
自然语言强化学习(NLRL)是一种将传统强化学习扩展到自然语言表示空间的新型框架,通过结合大型语言模型(LLMs),实现对语言反馈的直接处理。相比传统方法,NLRL在语言任务中具有更强的适用性和解释性,已在迷宫、突破和井字棋等游戏中展现良好性能。其优势包括语言反馈处理能力、增强的可解释性以及与LLMs的高效结合,但也面临语言歧义性、计算资源需求高及泛化能力有限等挑战。论文链接:https://arxiv.org/abs/2411.14251