盘点 AutoMQ 深度使用的阿里云云原生技术
AutoMQ是云原生Kafka实现,采用共享存储架构,与阿里云合作利用OSS、ESSD、ESS和抢占式实例降低成本,实现10倍于Apache Kafka的性价比,并提供自动弹性。它使用对象存储OSS实现流式数据高效读取,通过ESSD作为WAL保证性能,弹性伸缩服务ESS简化交付,抢占式实例降低成本。此外,AutoMQ利用ECS的高可用性和ESSD的高性能存储,结合NVMe协议和多重挂载技术,实现快速故障恢复和低成本运维。该系统旨在充分利用云原生能力,推动消息和流存储服务进步。
【阿里云云原生专栏】云原生时代的数据库选型:阿里云RDS与PolarDB对比分析
【5月更文挑战第24天】阿里云提供RDS和PolarDB两种数据库服务。RDS是高性能的在线关系型数据库,支持MySQL等引擎,适合中小规模需求;而PolarDB是分布式数据库,具备高扩展性和性能,适用于大规模数据和高并发场景。RDS与PolarDB在架构、性能、弹性伸缩、成本等方面存在差异,开发者应根据具体需求选择。示例代码展示了如何通过CLI创建RDS和PolarDB实例。
弹性伸缩优势
弹性伸缩具有自动化、降成本、高可用、灵活智能以及易审计等优势。
利用阿里云云产品进行项目成本节约的实践
本文分享了利用阿里云降低成本的实践经验,主要通过选择合适的计费模式(如按量付费、包年包月和抢占式实例)、优化资源配置(弹性伸缩、资源监控与调整、适配存储方案)、利用优惠和成本管理工具(预留实例券、成本预警、优惠活动)以及案例分析,实现云计算成本的有效控制。通过这些策略,企业在保证灵活性和扩展性的同时,能更好地管理云服务成本,提高项目经济效益。
【阿里云弹性计算】实战教程:如何高效利用阿里云ECS弹性伸缩应对业务高峰
【5月更文挑战第20天】本文介绍了如何使用阿里云ECS弹性伸缩服务应对业务高峰。通过自动调整云资源规模,弹性伸缩在流量增加时扩展实例,流量减少时收缩实例,实现成本与性能的优化。步骤包括开通服务、创建伸缩组、设定规则和监控指标。文中还提供了一个Python脚本示例,并强调了优化策略,如应用无状态设计、考虑冷却时间和结合云监控。通过实践和调整,企业可以有效应对业务波动。
AutoMQ:基于阿里云计算与存储产品实现云原生架构升级
AutoMQ[1] 是新一代基于共享存储架构实现的云原生 Kafka。得益于其存算分离的共享存储架构,通过和阿里云合作,深度使用阿里云可靠、先进的云服务如对象存储OSS、块存储 ESSD、弹性伸缩ESS以及抢占式实例实现了相比 Apache Kafka 10倍的成本优势并且提供了自动弹性的能力。