人机交互

首页 标签 人机交互
# 人机交互 #
关注
1840内容
重磅发布|支持东方40语种+中国22方言的新SOTA语音大模型Dolphin开源啦!
在当今数字化时代,语音识别技术已成为人机交互的关键桥梁,广泛应用于智能客服、语音助手、会议转录等众多领域。
|
9月前
| |
来自: 通义灵码
鸿蒙特效教程09-深入学习animateTo动画
本教程将带领大家从零开始,一步步讲解如何讲解 animateTo 动画,并实现按钮交互效果,使新手也能轻松掌握。
Multi-Agent Orchestrator:亚马逊开源AI智能体自动协作黑科技!重构人机交互逻辑,1秒精准分配任务
Multi-Agent Orchestrator 是亚马逊开源的多智能体框架,能够动态分配代理、维护上下文、支持多种代理类型,适用于客户服务、智能交通、物流配送等复杂场景。
Agent TARS:一键让AI托管电脑!字节开源PC端多模态AI助手,无缝集成浏览器与系统操作
Agent TARS 是一款开源的多模态AI助手,能够通过视觉解析网页并无缝集成命令行和文件系统,帮助用户高效完成复杂任务。
|
9月前
| |
来自: 通义灵码
鸿蒙特效教程01-哔哩哔哩点赞与一键三连效果实现教程
本教程面向HarmonyOS初学者,详细讲解如何实现类似哔哩哔哩APP中的点赞与一键三连效果。内容涵盖基础布局、状态切换、点击动画、长按手势识别、旋转缩放动画以及粒子爆炸效果的实现。通过ArkUI布局系统、状态管理、手势处理和动画技术,逐步完成从简单到复杂的交互设计。最终效果包括图标变色、缩放、旋转及粒子动画,为用户提供流畅生动的体验。适合希望掌握HarmonyOS开发技巧的开发者学习参考。
|
9月前
|
基于Python的情感分析与情绪识别技术深度解析
本文探讨了基于Python的情感分析与情绪识别技术,涵盖基础概念、实现方法及工业应用。文中区分了情感分析与情绪识别的核心差异,阐述了从词典法到深度学习的技术演进,并通过具体代码展示了Transformers架构在细粒度情感分析中的应用,以及多模态情绪识别框架的设计。此外,还介绍了电商评论分析系统的构建与优化策略,包括领域自适应训练和集成学习等方法。未来,随着深度学习和多模态数据的发展,该技术将更加智能与精准。
|
9月前
|
清华、面壁提出创新AI Agent交互:能主动思考、预测需求
清华大学与面壁智能团队提出了一种创新的AI Agent交互模式,将基于大型语言模型的智能体从被动响应转变为主动协助。通过数据驱动的方法,研究团队开发了能够预测和主动发起任务的智能体,并创建了ProactiveBench数据集。实验结果显示,经过微调的模型在主动性方面取得了66.47%的F1分数,展示了该方法在人机协作中的潜力。论文链接:https://arxiv.org/abs/2410.12361
|
10月前
|
《深度剖析:深度学习算法如何赋能脑机接口信号处理》
脑机接口(BCI)技术是神经科学与人工智能的前沿交叉领域,旨在实现大脑与外部设备的直接交互。信号处理是其关键环节,深度学习算法的应用带来了质的飞跃。通过强大的特征学习能力和端到端的学习方式,深度学习能自动提取复杂脑电信号中的有用信息,适应个体差异和多模态数据融合,显著提升了BCI系统的性能。尽管仍面临数据量小、可解释性差等挑战,但未来有望推动人机交互技术的重大突破。
免费试用