使用 Apifox、Postman 测试 Dubbo 服务,Apache Dubbo OpenAPI 即将发布
Apache Dubbo 3.3.3(即将发布)实现了与 OpenAPI 的深度集成,通过与 OpenAPI 的深度集成,用户能够体验到从文档生成到接口调试、测试和优化的全流程自动化支持。不论是减少手动工作量、提升开发效率,还是支持多语言和多环境,Dubbo 3.3.3 都展现了其对开发者体验的极大关注。结合强大的 Mock 数据生成和自动化测试能力,这一版本为开发者提供了极具竞争力的服务治理解决方案。如果你正在寻找高效、易用的微服务框架,Dubbo 3.3.3 将是你不容错过的选择。
网络分析与监控:阿里云拨测方案解密
阿里云网络拨测业务提供了全球、多种协议、多种网络态势的用户网络性能和用户体验监控场景的全面可观测方案。该文章从拨测场景下,介绍了用户如何快速的构建一套全球用户视角的服务可用性大盘,为客户的业务保驾护航。
云上数据安全保护:敏感日志扫描与脱敏实践详解
随着企业对云服务的广泛应用,数据安全成为重要课题。通过对云上数据进行敏感数据扫描和保护,可以有效提升企业或组织的数据安全。本文主要基于阿里云的数据安全中心数据识别功能进行深入实践探索。通过对商品购买日志的模拟,分析了如何使用阿里云的工具对日志数据进行识别、脱敏(3 种模式)处理和基于 StoreView 的查询脱敏方式,从而在保障数据安全的同时满足业务需求。通过这些实践,企业可以有效降低数据泄漏风险,提升数据治理能力和系统安全性。
Kubernetes上安装Metallb和Ingress并部署应用程序
Kubernetes上安装Metallb和Ingress并部署nginx应用程序,使用LoadBalancer类型的KubernetesService
一文详解 RocketMQ 如何利用 Raft 进行高可用保障
本文介绍 RocketMQ 如何利用 Raft(一种简单有效的分布式一致性算法)进行高可用的保障,总结了 RocketMQ 与 Raft 的前世今生。可以说 Raft 的设计给 RocketMQ 的高可用注入了非常多的养分,RocketMQ 的共识算法与高可用设计在 2023 年也得到了学术界的认可,被 CCF-A 类学术会议 ASE 23' 录用。
All in One:Prometheus 多实例数据统一管理最佳实践
当管理多个Prometheus实例时,阿里云Prometheus托管版相比社区版提供了更可靠的数据采集和便捷的管理。本文比较了全局聚合实例与数据投递方案,两者在不同场景下各有优劣。
青团社:亿级灵活用工平台的云原生架构实践
青团社是国内领先的一站式灵活用工招聘服务企业,灵活用工行业的 Top1。青团社于 2013 年在杭州成立,业务已经覆盖全国,在行业深耕 10 年。我的分享将分为以下三部分:青团社架构演进的历程、青团社如何实现云原生、总结与展望。
百万并发,API 网关抗住了亚运会流量高峰
本文主要介绍作为亚运会所有核心流量的入口,阿里云推出了一款百万并发规格的 API 网关,抗住了亚运会流量高峰,为亚运会提供强大的技术支持。
为什么 Higress 是 Knative 入口网关的最佳实践
Knative Serving 是一款基于 K8s 的 Serverless 开源平台,用于构建和管理现代化、可拓展、流量驱动、无服务器的应用程序。本文重点关注 Knative 网络层能力的实现。
Redis从入门到精通之底层数据结构快表 - QuickList详解
Redis中的快表(QuickList)是一种特殊的数据结构,用于存储一系列的连续节点,每个节点可以是一个整数或一个字节数组。快表是Redis中的底层数据结构之一,常用于存储有序集合(Sorted Set)等数据类型的底层实现。在本文中,我们将深入了解Redis中的快表,包括快表的结构和操作等。
邀请函|2022云原生实战峰会,邀请您免费现场参会报名
解读阿里云云原生为企业数字创新打造的新思路、新策略、新计划、新方案,解构云原生在行业的经典应用场景,展现云原生从理念到落地的最佳路径。
并发模式与 RPS 模式之争,性能压测领域的星球大战
本文是《如何做好性能压测》系列专题分享的第四期,该专题将从性能压测的设计、实现、执行、监控、问题定位和分析、应用场景等多个纬度对性能压测的全过程进行拆解,以帮助大家构建完整的性能压测的理论体系,并提供有例可依的实战。
Nacos Committers 团队首亮相,发布 0.9.0 版本
223 天,发布 14 个版本,19 位 Committers,39 位 Contributors。 在宣布开源后的第 223 天,Nacos 发布了其第14个版本 - 0.9.0,该版本提升了 Nacos-Sync 的稳定性,支持 Server 功能拆分部署,以及提供了对 Python 语言体系的支持。
阿里云新推出 HiTSDB + IoT套件 物联网设备上云步入快车道
阿里云针对物联网企业遇到的5大痛点,提供了HiTSDB +IoT 套件的一体化解决方案,能够支持物联设备快速上云,高效设备管理,数据安全,低成本海量数据存储,实时掌握设备状态,快速发现数据价值等,可以让更多物联网企业快速拥抱云计算。
HiStore:阿里巴巴海量数据场景下的OLAP解决方案
7月27日,云栖社区、阿里中间件举办了首届阿里巴巴中间件技术峰会,揭秘阿里10年分布式技术干货。在首届阿里巴巴中间件技术峰会上,阿里巴巴中间件技术专家焦方飞为大家分享阿里巴巴海量数据场景下的OLAP解决方案,此外还对阿里新推出的高性能时序数据库进行了简单介绍,精彩不容错过。
阿里开源消息中间件RocketMQ的前世今生
昨天,我们将分布式消息中间件RocketMQ捐赠给了开源软件基金会Apache。 孵化成功后,RocketMQ或将成为国内首个互联网中间件在Apache上的顶级项目。
从“看曲线”到“懂问题”:MetricSet Explorer 如何重构指标分析体验
告警太多看不过来?MetricSet Explorer 来帮你“挑重点”:自动识别异常、智能分组聚类、一键定位根因,让百万级指标也能秒级洞察!
Entity Explorer:基于 UModel 的实体探索平台
阿里云 Entity Explorer 正式发布:基于 UModel 的智能实体探索平台,实现亿级实体秒级检索、关系拓扑自动构建、详情页动态渲染,让可观测性从“数据堆砌”迈向“业务洞察”。
多源 RAG 自动化处理:从 0 到 1 构建事件驱动的实时 RAG 应用
当企业想用大模型和内部非公开信息打造智能问答系统时,RAG(Retrieval-Augmented Generation,检索增强生成)已成为必备技术。然而,在实际落地中,构建 RAG 应用的数据准备过程繁琐复杂且充满挑战,让很多企业和开发者望而却步。本文将介绍构建 RAG 的最佳实践:通过阿里云事件总线 EventBridge 提供的多源 RAG 处理方案,基于事件驱动架构为企业 AI 应用打造高效、可靠、自动化的数据管道,轻松解决 RAG 数据处理难题。
森马如何用阿里云 AI 网关,轻松实现“AI+业务”高效落地
森马快速实现 AI 转型,通过阿里云 AI 网关(即 Higress 企业版)及注册配置中心 Nacos3.0 实现了多模型多 MCP server 统一接入统一管理统一配置,将存量服务一键转换为 MCP server,使 AI 与生产业务相结合,综合提效 30%。
从“天书”到源码:HarmonyOS NEXT 崩溃堆栈解析实战指南
本文详解如何利用 hiAppEvent 监控并获取 sourcemap、debug so 等核心产物,剖析了 hstack 工具如何将混淆的 Native 与 ArkTS 堆栈还原为源码,助力开发者掌握异常分析方法,提升应用稳定性。
从 IDC 到云原生:稳定性提升 100%,成本下降 50%,热联集团的数字化转型与未来展望
热联集团在进行了云原生架构的升级与探索后,显著提升了业务系统的稳定性和敏捷性。这一转变不仅为公司冲击更高的销售目标奠定了坚实的技术基础,也标志着热联在数字化转型道路上迈出了关键一步。通过采用微服务、容器化等先进技术手段,热联能够更加灵活地响应市场变化,快速迭代产品和服务,满足客户日益增长的需求。
重磅!阿里云可观测产品家族全新升级,AI +数据双驱动,打造全栈可观测体系
近日,阿里云可观测产品家族正式发布云监控 2.0,隶属产品日志服务 SLS、云监控 CMS、应用实时监控服务 ARMS 迎来重磅升级。
容器内存可观测性新视角:WorkingSet 与 PageCache 监控
本文介绍了 Kubernetes 中的容器工作内存(WorkingSet)概念,它用于表示容器内存的实时使用量,尤其是活跃内存。
Redis 从入门到精通之Redis操作测试指定key是否存在
在Redis中,可以使用`EXISTS`命令来测试指定的key是否存在。 `EXISTS`命令的基本语法如下: ``` EXISTS key ``` 其中,`key`是要测试的key的名称。如果指定的key存在,命令返回1;如果指定的key不存在,命令返回0。jedis.exists("foo");RedisTemplate的操作,包括测试指定key是否存在。使用该类可以方便地进行Redis操作,而无需关注底层细节。`exists`方法使用`hasKey`方法测试指定key是否存在,如果存在,则返回true;如果不存在,则返回false。
一文读懂蓝绿发布、A/B 测试和金丝雀发布的优缺点
目前,业界已经总结出了几种常见的服务发布策略来解决版本升级过程中带来的流量有损问题。本文首先会对这些普遍的发布策略进行简单的原理解析,最后结合阿里云的云原生网关对这些发布策略进行实践。
《Nacos 架构与原理》| Nacos社区首本电子书免费下载
《Nacos 架构与原理》是 Nacos 电子书系列计划的第一步,并且这部分内容希望和社区共同创作,社区会推动 Nacos 电子书持续更新迭代,也欢迎更多小伙伴能加入 Nacos 社区一起创作。我们把电子书文档通过语雀公开文档像社区开放评论和更新,希望大家针对于内容共同进行校对,并且也欢迎进行投稿,把经验向社区更多个人和企业进行分享。
埃森哲携手阿里云共建基于云原生的消费者运营中台解决方案
作为全球领先的专业服务公司,埃森哲凭借独特的业内经验与专业技能,以及翘楚全球的卓越技术中心和智能运营中心,此次携手阿里云为零售行业客户提供专业的云原生CDP+MA解决方案。
阿里巴巴在应用性能测试场景设计和实现上的实践
提升性能前,先测试摸个底,找到性能瓶颈。 测试前,先设计好应用性能的测试场景,并实现它。 本文是《Performance Test Together》(简称PTT)系列专题分享的第5期,该专题将从性能压测的设计、实现、执行、监控、问题定位和分析、应用场景等多个纬度对性能压测的全过程进行拆解,以帮助大家构建完整的性能压测的理论体系,并提供有例可依的实战。
3分钟,了解阿里云热门产品 ZooKeeper
本文来自畅销书《从 Paxos 到 Zookeeper》作者倪超,讲述了其对阿里云最新发布的微服务引擎 MSE 产品的使用初体验。 (图片来自《从 Paxos 到 ZooKeeper 》一书的封面) 屏幕前的读者朋友们 如果 正在为运维 ZooKeeper 这份至关重要,但繁琐而枯燥 甚至心里没底的活 而烦恼 如果 正在为自己的应用 找寻一个高可用,且免运维的 ZooKeeper 那么,它来了 阿里云全托管的 ZooKeeper 集群产品 微服务引擎 MSE 读者可以在任何搜索引擎搜索“微服务引擎 MSE”,即可直达产品官网。
Kafka vs RocketMQ ——消息及时性对比
引言 在前几期的消息中间件对比中,我们为Kafka和RocketMQ设定了几个性能场景(单机系统可靠性、多Topic对性能稳定性的影响以及Topic数量对单机性能的影响),这些场景大都是以服务端的吞吐能力为对比焦点。这一期,我们将从客户端的角度出发,为大家带来Kafka和RocketMQ消息及时性
打造你的专属 AI 导游:基于 RocketMQ 的多智能体异步通信实战
在现代 AI 应用中,多智能体(Multi-Agent)系统已成为解决复杂问题的关键架构。然而,随着智能体数量增多和任务复杂度提升,传统的同步通信模式逐渐暴露出级联阻塞、资源利用率低和可扩展性差等瓶颈。为应对这些挑战,RocketMQ for AI 提供了面向 AI 场景的异步通信解决方案,通过事件驱动架构实现智能体间的高效协作。本文将探讨和演示如何利用 RocketMQ 构建一个高效、可靠且可扩展的多智能体系统,以解决企业级 AI 应用中的核心通信难题。
【本不该故障系列】告别资源“不确定性”,SAE 如何破解刚性交付核心困境
资源刚性交付是保障线上业务稳定的核心。阿里云SAE通过全托管Serverless架构,实现资源无限弹性、性能100%隔离、按需秒级计费,破解自建K8s在库存、性能、成本等方面的系统性困境,让企业无需妥协即可获得确定性交付能力。
故障发现提速 80%,运维成本降 40%:魔方文娱的可观测升级之路
魔方文娱携手阿里云构建全栈可观测体系,实现故障发现效率提升 80%、运维成本下降 40%,并融合 AI 驱动异常检测,迈向智能运维新阶段。
深度解析 Android 崩溃捕获原理及从崩溃到归因的闭环实践
崩溃堆栈全是 a.b.c?Native 错误查不到行号?本文详解 Android 崩溃采集全链路原理,教你如何把“天书”变“说明书”。RUM SDK 已支持一键接入。
零代码改造!LoongSuite AI 采集套件观测实战
在 AI 时代,随着模型和应用侧的快速演化,对于推理过程,成本和性能显得尤为重要,而端到端的 AI 可观测是其中至关重要的一环。本文将介绍端到端 AI 可观测的基本概念与痛点,并通过阿里云可观测团队最新开源的 AI 采集套件 LoongSuite Agent 来对大模型应用进行全链路可观测以解决这些痛点。帮助客户无侵入,低成本地进行全链路的大模型可观测。
从体验到系统工程丨上手评测国内首款 AI 电商 App
近期,1688 推出了 1688 AI App,这貌似是国内第一个电商领域的独立 AI App 应用(若不是,欢迎评论指正)。本文试图通过产品界面这一入口,窥探其背后的系统工程。
Log/Trace/Metric 完成 APIServer 可观测覆盖
12 月 11 日,OpenAI 出现了全球范围的故障,影响了 ChatGPT/API/Sora/Playground/Labs 等服务,持续时间超过四个小时。究其背后原因,主要是新部署的服务产生大量的对 K8s APIServer 的请求,导致 APIServer 负载升高,最终导致 DNS 解析不能工作,影响了数据面业务的功能。面对 APIServer 这类公用基础组件,如何通过 Log/Trace/Metric 完成一套立体的覆盖体系,快速预警、定位根因,降低不可用时间变得非常重要。