Mars 如何分布式地执行
先前,我们已经介绍过 Mars 是什么。如今 Mars 已在 Github 开源并对内上线试用,本文将介绍 Mars 已实现的分布式执行架构,欢迎大家提出意见。 架构 Mars 提供了一套分布式执行 Tensor 的库。
SparkSQL ThriftServer 安全相关功能的现状分析
SparkSQL Thrift Server 是 Spark SQL基于 Apache Hive的 HiveServer2开发的,通过SparkSQL Thrift Server 可以使 Spark SQL支持 JDBC/ODBC 的连接方式,用户可以通过 JDBC and ODBC 协议,在Spark上执行 SQL。

大数据搬站step by step
IDC,ECS自建和云数据库之间的数据搬站 1 IDC -> MaxCompute / EMR **【方案】:使用“独享数据集成资源组”,绑定可以连通用户IDC的用户VPC,然后提工单,由阿里云数据集成开发人员在独享数据集成资源组上配置路由,使独享数据集成资源组可以访问IDC内数据源。
当大数据邂逅酷暑,谁的热度更高?— 大数据计算杭州峰会圆满落幕
今夏,什么最热?世界杯。。。 除了世界杯还有什么热?杭州的天气。。。 当杭州酷暑遇上大数据,哪个更热? 先不答,往下看。 众所周知,计算的价值绝不止于计算本身,而是让不会说话的数据发声。 从玛雅历法到圆周率,从万有引力定律到二进制,从固化的物体到虚拟的思维都由数据注入。
带你玩转Logview: MaxCompute Logview参数详解和问题排查
对于Logview上的诸多参数信息,究竟应该怎么“拨开云雾”,发现问题所在呢?又如何通过Logview了解每个instance、task运行状态及资源占用情况,如何分析执行计划,分析query存在问题,找到Long-Tails task,让数据分析业务高效又省钱呢?本文中,阿里巴巴计算平台产品专家云花将为大家揭晓答案。
PAI智能答疑机器人上线啦
随着人工智能相关产业的持续火热,越来越多的同学开始尝试使用机器学习算法去解决问题。阿里云机器学习PAI平台作为人工智能行业的黑产物,每天都会收到用户们大量的咨询。为了更好地服务PAI平台的用户,同时也为了缓解售后同学的工作量。
Spark on Kubernetes原生支持浅析
概述 Kubernetes自推出以来,以其完善的集群配额、均衡、故障恢复能力,成为开源容器管理平台中的佼佼者。从设计思路上,Spark以开放Cluster Manager为理念,Kubernetes则以多语言、容器调度为卖点,二者的结合是顺理成章的。
来!PyFlink 作业的多种部署模式
关于 PyFlink 的博客我们曾介绍过 PyFlink 的功能开发,比如,如何使用各种算子(Join/Window/AGG etc.),如何使用各种 Connector(Kafka, CSV, Socket etc.),还有一些实际的案例。
大数据列式存储 Parquet 和 ORC 简介
随着大数据 Hadoop/Spark 开源生态的不断发展和成熟,TextFile、CSV这些文本格式存储效率低,查询速度慢,往往不能很好地满足大数据系统中存储和查询的需求,列式存储也在大数据社区逐渐兴起到成熟。
通过Gateway访问Presto
本文介绍使用HAProxy反向代理实现通过Gateway节点访问Presto服务的方法。该方法也很容扩展到其他组件,如Impala等。

如何构建批流一体数据融合平台的一致性语义保证?
本文根据陈肃老师在 Apache Kafka x Flink Meetup 深圳站的分享整理而成,文章首先将从数据融合角度,谈一下 DataPipeline 对批流一体架构的看法,以及如何设计和使用一个基础框架。其次,数据的一致性是进行数据融合时最基础的问题。
Flink China 社区运营成果报告(7月-9月)
为进一步提升Apache Flink在国内的技术影响力,实时计算组运营团队在过去两个月的时间里,对Flink China社区持续进行品牌包装与推广,现将运营效果通过生态建设 / 活动运营 / 问卷调研 / 社区共建 / 内容输出 / 运营计划 六个方面展示。
阿里云智能推荐AIRec产品介绍
本文中,来自阿里云搜索推荐技术团队的三秋为大家介绍了阿里云智能推荐AIRec产品的技术架构、核心功能,并与大家分享了使用阿里云智能推荐AIRec的实际案例以及技术场景。
开源大数据周刊-第38期
本期关注:梨视频基于阿里云E-MapReduce搭建视频推荐系统的实践,Apache Eagle成为新的顶级项目,英特尔开源的分布式深度学习库BigDL,Hadoop 3.0新功能测评
MaxCompute全表扫描新功能,给你“失误”的机会
MaxCompute提供了在不修改代码的前提下,在MapReduce或自定义函数(UDF) 代码中,通过某个固定的资源名读取不同资源(数据)的需求。
[转载] 是时候学习真正的 spark 技术了
spark sql 可以说是 spark 中的精华部分了,我感觉整体复杂度是 spark streaming 的 5 倍以上,现在 spark 官方主推 structed streaming, spark streaming 维护的也不积极了, 我们基于 spark 来构建大数据计算任务,重心也要...

揭秘工业级大规模GNN图采样
互联网下的图数据纷繁复杂且规模庞大,如何将GNN应用于如此复杂的数据上呢?答案是图采样。结合阿里巴巴开源的GNN框架Graph-Learn(https://github.com/alibaba/graph-learn),本文重点介绍GNN训练过程中的各种图采样和负采样技术。
MaxCompute_SQL_开发指南
背景及目的 本文结果都是在SQL标准语义模式下的推导结果,希望大家都能够按照标准的SQL语义来写SQL,这样才能保证后续SQL的可移植性。 SQL概述 MaxCompute SQL适用于海量数据(GB、TB、EB级别),离线批量计算的场合。
小米流式平台架构演进与实践
小米业务线众多,从信息流,电商,广告到金融等覆盖了众多领域,小米流式平台为小米集团各业务提供一体化的流式数据解决方案,主要包括数据采集,数据集成和流式计算三个模块。目前每天数据量达到 1.2 万亿条,实时同步任务 1.5 万,实时计算的数据 1 万亿条。
[转载] Spark Structed Streaming执行过程
在Struct Streaming中增加了支持sql处理流数据,在sql包中单独处理,其中StreamExecution是下面提到两处流处理的基类,这个流查询在数据源有新数据到达时会生成一个QueryExecution来执行并将结果输出到指定的Sink(处理后数据存放地)中。
Hive数据如何同步到MaxCompute之实践讲解
本次分享主要介绍 Hive数据如何迁移到MaxCompute。MMA(MaxCompute Migration Assist)是一款MaxCompute数据迁移工具,本文将为大家介绍MMA工具的功能、技术架构和实现原理,再通过实际操作MMA,演示将Hive数据迁移到MaxCompute。
使用Apache Arrow助力PySpark数据处理
Apache Arrow从Spark 2.3版本开始被引入,通过列式存储,zero copy等技术,JVM 与Python 之间的数据传输效率得到了大量的提升。本文主要介绍一下Apache Arrow以及Spark中的使用方法。
Flink 实时写入数据到 ElasticSearch 性能调优
线上业务反应使用 Flink 消费上游 kafka topic 里的轨迹数据出现 backpressure,数据积压严重。单次 bulk 的写入量为:3000/50mb/30s,并行度为 48。针对该问题,为了避免影响线上业务申请了一个与线上集群配置相同的 ES 集群。
实时计算在贝壳的实践
本文由贝壳找房的资深工程师刘力云将带来Apache Flink技术在贝壳找房业务中的应用,通过企业开发的实时计算平台案例的分享帮助用户了解Apache Flink的技术特性与应用场景。
开源大数据周刊-第43期
阿里云E-MapReduce动态 E-MapReduce发布新版本,可以在控制台管理meta表结构。 资讯 人脸识别,要靠哪些技术支撑,是否会泄露个人隐私? 本文介绍人脸识别用到哪些技术,讨论如何保护用户隐私 一图看懂AI阵营:学习AI 站错队可导致自取灭亡 本文介绍现在AI技术阵营,对AI各流派进行细分,梳理了17种方法,并用 图直观展现。

Apache Flink 零基础入门(八): SQL 编程实践
本文是 Apache Flink 零基础入门系列文章第八篇,将通过五个实例讲解 Flink SQL 的编程实践。
【南京Meetup】Elastic 探秘之遗落的珍珠
2018 Elastic Meetup南京交流会,来自Elastic的工程师曾勇对Elastic进行了讲述,Elastic是世界领先的开源提供商,是一个世界领先的软件开发商。曾勇主要对Elasticsearch、kibana、logstash/Beats、X-Pack里的一些功能进行了介绍。
Apache Flink 进阶(六):Flink 作业执行深度解析
本文根据 Apache Flink 系列直播课程整理而成,由 Apache Flink Contributor、网易云音乐实时计算平台研发工程师岳猛分享。主要分享内容为 Flink Job 执行作业的流程,文章将从两个方面进行分享:一是如何从 Program 到物理执行计划,二是生成物理执行计划后该如何调度和执行。
实时计算Flink云原生版本正式发布
Why Flink on Kubernetes Apache Flink是Apache社区的顶级开源项目,主攻流计算领域,具备高吞吐,低延时的特点,在流计算领域已经取代了storm/spark streaming,成为了目前流式处理领域的最热门引擎。
都在说实时数据架构,你了解多少?
本文从上述现状及实时数据需求出发,结合工业界案例、笔者的实时数据开发经验, 梳理总结了实时数据体系建设的总体方案。
MaxCompute SQL 使用正则表达式选列
编辑MaxCompute SQL 时,经常会需要在某个表N个列中指定一些列。若需要指定的列比较少,编写SQL时一个个输入既可。当遇到列多的时候,一个个输入就会非常费劲。本文将介绍如何在编写MaxCompute SQL时通过正则表达式表达列(column),从而提升编码效率。
Spark Streaming 框架在 5G 中的应用
在发展 5G 和 IoT 场景的准备阶段,爱立信研究了各种可扩展和灵活的流处理框架,以解决数据流水线问题以及提升整体性能。我们通过机器学习流数据进行自适应学习和智能决策从而实现各个领域的自动化。其中使用机器学习算法从流数据中逐步学习模型和获取信息是一个巨大的挑战。
玩转阿里云EMR三部曲-入门篇
优异的自动化创建集群让小伙伴可以专心于业务开发,不再纠结于hadoop版本,spark版本,甚至某些jar版本引发的各种奇怪问题,按需集群按小时计费模式替小伙伴们极大节省了开支,可以50个节点执行1小时,也可以3个节点执行5小时,非常灵活。

Spark Codegen浅析
Codegen是Spark Runtime优化性能的关键技术,核心在于动态生成java代码、即时compile和加载,把解释执行转化为编译执行。Spark Codegen分为Expression级别和WholeStage级别,分别针对表达式计算和全Stage计算做代码生成,都取得了数量级的性能提升。本文浅析Spark Codegen技术原理。
Flink 1.10 Native Kubernetes 原理与实践
Flink 在 1.10 版本完成了 Active Kubernetes Integration 的第一阶段,支持了 session clusters。后续的第二阶段会提供更完整的支持,如支持 per-job 任务提交,以及基于原生 Kubernetes API 的高可用,支持更多的 Kubernetes 参数如 toleration, label 和 node selector 等。
使用 Jupyter Notebook 运行 Delta Lake 入门教程
本文通过 jupyter notebook 工具演示了 Delta Lake 的官方教程
Koalas:让 pandas 轻松切换 Apache Spark
4 月 24 日,Databricks 在 Spark + AI 峰会上开源了一个新产品 Koalas,它增强了 PySpark 的 DataFrame API,使其与 pandas 兼容。本文转自:https://www.infoq.cn/article/tvGrtwJxCR1kQDs_kqa4
HIVE TopN shuffle 原理
TopN 问题是排序中的一个经典问题。对于一个长度为 m 的数组,取其最大的 n (n
8月14日Spark社区直播【Spark Shuffle 优化】
本次直播介绍EMR Spark 在shuffle方面的相关优化工作,主要包含shuffle 优化的背景以及shuffle 优化的设计方案,最后会介绍Spark shuffle 在 TPC-DS测试中的性能数据
百万TPS高吞吐、秒级低延迟,阿里搜索离线平台如何实现?
阿里主搜(淘宝天猫搜索)是搜索离线平台非常重要的一个业务,具有数据量大、一对多的表很多、源表的总数多和热点数据等特性。对于将主搜这种逻辑复杂的大数据量应用迁移到搜索离线平台总是不缺少性能的挑战,搜索离线平台经过哪些优化最终实现全量高吞吐、增量低延迟的呢?

阿里云大数据+AI技术沙龙上海站
EMR 团队在国内运营最大的 Spark 社区,为了更好地传播和分享业界最新技术和最佳实践,现在联合Intel及开源社区同行,打造一个纯粹的技术交流线下沙龙《大数据 + AI》,定期为大家做公益分享。首站上海开站,请猛戳链接报名!https://www.slidestalk.com/m/61
Flink kafka source & sink 源码解析
本文基于 Flink 1.9.0 和 Kafka 2.3 版本,对 Flink Kafka source 和 sink 端的源码进行解析,主要分为 Flink-kafka-source 源码解析、Flink-kafka-sink 源码解析两部分。
【推荐算法】商品推荐_3054
test<br />数据源:<br />数据大小:328 KB<br />字段数量:4<br />使用组件:过滤与映射,SQL脚本,读数据表,JOIN<br />
如何在Spark中实现Count Distinct重聚合
背景 Count Distinct是SQL查询中经常使用的聚合统计方式,用于计算非重复结果的数目。由于需要去除重复结果,Count Distinct的计算通常非常耗时。为了支持更快速的非重复结果统计Spark还基于Hyperloglog实现了Approximate Count Distinct,用于统计非重复结果的近似值,支持。

10月17日Spark社区直播【Tablestore Spark Streaming Connector -- 海量结构化数据的实时计算和处理】
本次直播我们邀请了Tablestore存储服务技术专家 朱晓然 ,为大家详细介绍如何基于Tablestore的CDC技术,将大表内实时数据更新对接Spark Streaming来实现数据的实时计算和处理。

大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。