时序数据库场景下的Elasticsearch(一):技术特点简介
本文介绍了时间序列数据的特点和主流的技术分类,以及Elasticsearch在时序数据库场景下的技术特点。
PyOdps 0.4版本发布,从一个故事说起
PyOdps 0.4版本,DataFrame API支持使用pandas进行本地计算,用户因此能join ODPS和本地数据,也能进行本地debug,另外还有MapReduce API等新特性
E-MapReduce上如何采集Kafka客户端Metrics
我们知道Kafka提供一套非常完善的Metrics数据,覆盖Broker,Consumer,Producer,Stream以及Connect。E-MapReduce通过Ganglia收集了Kafka Broker metrics信息,可以很好地监控Broker运行状态。
MaxCompute UDF系列之判断字符串中是否包含汉字
为了验证字符串中是否包含中文汉字,今天为大家提供一个自动判断中文字符的MaxCompute UDF,下载地址见附件。 效果如下: MaxCompute UDF代码如下: package com.
istio网络转发分析
通过demo分析istio的网络转发流程,从而对istio实现原理有更为直观的认识。本文先介绍了涉及到的相关概念和背景知识,然后对具体应用进行分析。背景知识概念分散,参考文章较多,敬请谅解。
【对话科技】Flink技术介绍和新功能展望
2017年6月22号,由“京城学堂”和阿里巴巴集团技术发展部主办的“对话科技”系列讲座邀请到了Apache Flink项目的PMC成员,来自德国DataArtisans公司的Till Rohrmann,在北京阿里中心为关注实时计算技术的阿里同学做了一场关于Apache Flink技术发展的精彩分享。
阿里云MaxCompute携手华大基因打造精准医疗应用云平台,十万基因组计算成本降低至1000美金以内
摘要:华大基因股份公司总监金鑫介绍了华大基因,并浅谈了与阿里云的情缘,包括Maxcompute等方面应用案例。一起来看下吧。 关于华大基因 华大基因是中国最领先的基因科技公司,华大基因为消除人类病痛、经济危机、国家灾难、濒危动物保护、缩小贫富差距等方面提供分子遗传层面的技术支持。
【玩转数据系列十六】机器学习PAI通过声音分辨男女(含语音特征提取相关数据和代码)
机器学习PAI通过声音数据分辨男女(含语音特征提取相关数据和代码)
数加平台如何通过Serverless 架构实现普惠大数据
Serverless 架构旨在将应用开发者从底层基础设施的运维中解放出来,更加专注于业务价值的实现上,这种思想对于大数据应用尤其适用,数据科学家更需要投入到数据价值的探索和挖掘上。本文讲述了数据平台如何利用Serverless 的架构来降低大数据应用的门槛,真正的实现普惠大数据。
阿里云数加合作伙伴-袋鼠云获A轮融资,成立一年半获三轮投资超亿元
创投市场再次风起。2017年7月,袋鼠云宣布,获得来自戈壁创投主投、元璟资本跟投的A轮融资,相对于当前冷淡的投资市场,此举也再次引发了行业对大数据、云计算技术创新企业的关注。据袋鼠云CEO陈吉平(花名:拖雷)介绍,获得的资金将投入到三个方面:数据智能产品研发、高端数据智能人才的引进和培养、袋鼠云品牌打造和市场推广。
AI加持的阿里云飞天大数据平台技术揭秘
摘要:2019云栖大会大数据&AI专场,阿里云智能计算平台事业部研究员关涛、资深专家徐晟来为我们分享《AI加持的阿里云飞天大数据平台技术揭秘》。本文主要讲了三大部分,一是原创技术优化+系统融合,打破了数据增长和成本增长的线性关系,二是从云原生大数据平台到全域云数仓,阿里开始从原生系统走入到全域系统模式,三是大数据与AI双生系统,讲如何更好的支撑AI系统以及通过AI系统来优化大数据系统。
大数据分析平台产品对比之MaxCompute 篇
之前尝试使用过一些国内外的云产品,特别是大数据分析型产品,例如:亚马逊的EMR、Redshift,Google的Bigquery以及阿里云的MaxCompute。相信大多数人对亚马逊的EMR、Redshift,Google的Bigquery都比较了解。
双11数据大屏背后的秘密:大规模流式增量计算及应用
回顾大数据技术领域大事件,最早可追溯到06年Hadoop的正式启动,而环顾四下,围绕着数据库及数据处理引擎,业内充斥着各种各样的大数据技术。在云栖社区2017在线技术峰会大数据技术峰会上,阿里云大数据计算平台架构师钱正平做了题为《大规模流式增量计算及应用》的分享,钱正平结合阿里巴巴真实的业务场景为大家分享了流式增量计算编程方面的挑战和当前的解决方案。
DataV 发布分享 Token 验证
有很多同学希望把 DataV 创建的数据可视化大屏整合到自己的网站中,我们很早就提供了这样的支持。 但是如果限定权限则成为了一个问题。 如你嵌入到自己网站中的大屏,可能不希望被别人提取出来,自己打开。
什么是PyODPS DataFrame
这篇文章解释了PyODPS DataFrame是什么,能做什么事情,以及简单介绍一下实现的原理。
双管齐下,MaxCompute数据上云与生态
在票选最美云上大数据暨大数据技术峰会上,来自飞天一部的朋春从MaxCompute提供的离线、实时数据通道入手,延伸到DTS、Logstash、DataX等官方/开源软件,向大家介绍如何从数据库、本地文件等多种存储向MaxCompute导入数据,分享最后还介绍了如何在Python和R语言中使用MaxCompute。
日均百亿级日志处理:微博基于 Flink 的实时计算平台建设
传统基于 Hadoop 生态的离线数据存储计算方案已在业界形成统一的默契,但受制于离线计算的时效性制约,越来越多的数据应用场景已从离线转为实时。微博广告实时数据平台以此为背景进行设计与构建,目前该系统已支持日均处理日志数量超过百亿,接入产品线、业务日志类型若干。
Cuckoo Hashing的应用及性能优化
Cuckoo Hash Table 使用了两个哈希函数来解决冲突。Cuckoo查询操作的理论复杂度为最差O(1),而Cuckoo的插入复杂度为均摊O(1)。我们引入Cuckoo是希望它在实际应用中,能够在较高的空间利用率下,仍然维持不错的查询性能。
手绘稿如何1秒变身数据大屏?深度学习让人人成为可视化专家
想在1天内快速搞定实时业务数据大屏吗?想用最短路径逆袭成为数据可视化大神吗?想在除了PRD外什么都没有的情况下,体验职场真人版绝境求生吗?
odps之sql性能优化
前一段时间做了一些作业成本优化的工作,这里做下总结。 首先说明本篇中谈及的优化主要的目标是在不大幅度增加作业运行时长的条件下对作业运行成本的优化。 ## 1. odps的优化引擎并没有那么智能 odps自带的优化引擎会对sql作业做一定的优化处理,如列裁剪、分区裁剪和谓词下推。
阿里集团搜索中台TisPlus
阿里集团搜索中台TisPlus 搜索中台的发展 从阿里很多技术产品的发展路径来看都遵循着技术驱动、产品驱动、数据驱动三个阶段,那阿里巴巴的搜索技术的发展也基本基于上述的发展路径。
MaxCompute(原ODPS)开发入门指南——数据开发工具篇
大家在使用大数据计算服务MaxCompute时,最头疼就是我现在已有的数据如何快速上云?我的日志数据如何采集到MaxCompute上?等等。。。具体详见《MaxCompute(原ODPS)开发入门指南——数据上云篇》。
阿里云大数据利器Maxcompute学习之--窗口函数实现分组TopN
看到很多用户经常会问如何对分组内进行排序。官方文档:https://help.aliyun.com/document_detail/34994.html?spm=5176.doc27891.6.611.
使用EMR-Kafka Connect进行数据迁移
流式处理中经常会遇到Kafka与其他系统进行数据同步或者Kafka集群间数据迁移的情景。使用EMR Kafka Connect可以方便快速的实现数据同步或者数据迁移。本文介绍使用EMR Kafka Connect的REST API接口在Kafka集群间进行数据迁移。
MaxCompute优化系列-如何使用`MAPJOIN` ?
MAPJOIN 当一个大表和一个或多个小表做JOIN时,最好使用MAPJOIN,性能比普通的JOIN要快很多。 另外,MAPJOIN 还能解决数据倾斜的问题。 MAPJOIN的基本原理是:在小数据量情况下,SQL会将用户指定的小表全部加载到执行JOIN操作的程序的内存中,从而加快JOIN的执行速度。
基于MaxCompute的图计算实践分享-图加载过程
一、前言 MaxCompute Graph 是基于飞天平台实现的面向迭代的图处理框架,为用户提供了类似于 Pregel 的编程接口。MaxCompute Graph(以下简称 Graph )作业包含图加载和计算两个阶段: 加载,将存储在表中的数据载入到内存中,以点和边的形式存在;
唱吧基于 MaxCompute 的大数据之路
在使用 MaxCompute之前,唱吧使用自建体系来存储处理各端收集来的日志数据,包括请求访问记录、埋点数据、服务器业务数据等。但随着每天处理数据量的增长,积累的历史数据越来越多,来自其他部门同事的需求越来越复杂,自建体系逐渐暴露出了能力上的短板。
【大数据新手上路】“零基础”系列课程--Flume收集网站日志数据到MaxCompute
概述:大数据时代,谁掌握了足够的数据,谁就有可能掌握未来,而其中的数据采集就是将来的流动资产积累。 任何规模的企业,每时每刻都在产生大量的数据,但这些数据如何归集、提炼始终是一个困扰。而大数据技术的意义确实不在于掌握规模庞大的数据信息,而在于对这些数据进行智能处理,从中分析和挖掘出有价值的
手把手,教你用MaxCompute+OpenSearch搭建分布式搜索引擎
最近,经常有客户咨询如何低成本搭建高性能的海量数据搜索引擎,比如实现公众号检索、影讯检索等等。由于客户的数据在阿里云上,所以希望找到云上解决方案。笔者开始调研一些云上产品,很多人向我推荐了OpenSearch,所以花了点时间好好研究了下,用过之后发现效果不错,自带分词、云数据库同步功能,在研究过程中也发现了一些问题,分享给大家。
大数据workshop:《云数据·大计算:海量日志数据分析与应用》之《社交数据分析:好友推荐》篇
本手册为云栖大会Workshop《云计算·大数据:海量日志数据分析与应用》的《社交数据分析:好友推荐》篇而准备。主要阐述如何在大数据开发套件中使用MR实现好友推荐。
【入门指南】操作阿里云Kibana
Elastic公司的“ELK”是目前最火的日志分析三剑客,其中ElasticSearch负责日志的索引,Logstash负责日志的收集,Kibana负责日志的展示和分析。Elastic与阿里云达成了合作伙伴关系,推出“阿里云 Elasticsearch”服务,提供了开箱即用的Elasticsearch和Kibana环境。
hive在E-MapReduce集群的实践(一)hive异常排查入门
hive是hadoop集群最常用的数据分析工具,只要运行sql就可以分析海量数据。初学者在使用hive时,经常会遇到各种问题,不知道该怎么解决。 本文是hive实践系列的第一篇,以E-MapReduce集群环境为例,介绍常见的hive执行异常,定位和解决方法,以及hive日志查看方法。
从数砖开源 Delta Lake 说起
Spark AI 北美峰会的第一天,坊间传闻被证实,Databrics(俗称数砖,亦称砖厂)的杀手锏 Delta 产品特性作为 Delta Lake 项目开源!会前,笔者有幸同砖厂的两位大佬李潇和连城做了个线下交流,谈到 Delta 时被告知会有相关重磅在大会上宣布,但却没想到是开源出去。
使用Spark Streaming SQL基于时间窗口进行数据统计
流式计算一个很常见的场景是基于事件时间进行处理,常用于检测、监控、根据时间进行统计等系统中。使用Spark Streaming SQL可以很方便的对事件数据中的时间字段进行处理,本文通过讲解一个统计用户在过去5秒钟内点击网页次数的案例,介绍如何使用Spark Streaming SQL对事件时间进行操作。
【大数据技术干货】阿里云伏羲(fuxi)调度器FuxiMaster功能简介(一) 多租户(QuotaGroup)管理
转载自xingbao 各位好,这是介绍阿里云伏羲(fuxi)调度器系列文章的第一篇,今天主要介绍多租户(QuotaGroup)管理的实现 一、FuxiMaster简介 FuxiMaster和Yarn非常相似,定位于分布式系统中资源管理与分配的角色:一个典型的资源分配流程图如下所
【技术实验】Elasticsearch 做数据库系列之一:表结构定义
Elaticsearch 有非常好的查询性能和查询语法,在一定场景下可以替代RDBMS做为OLAP。《Elasticsearch 做数据库系列》系列文章通过类比SQL的概念,实验并学习Elasticsearch聚合DSL的语法和语义,并用 python 实现一个翻译器,能够使用 SQL 来完成 Elasticsearch 聚合DSL一样的功能。
通过可视化更好的了解你的Spark应用
图的最大价值是它会推动我们去注意到那些我们从未预料到的东西。 – John Tukey Spark 1.4中对Spark UI进行改进,更加突出可视化的效果。我们来看一下他的主要的改动,主要包含三个方面: Spark事件的时间线视图 执行的DAG图 Spark Streaming 的可视化
【玩转数据系列十一】机器学习PAI眼中的《人民的名义》
最近热播的反腐神剧“人民的名义”掀起来一波社会舆论的高潮,这部电视剧之所能得到广泛的关注,除了老戏骨们精湛的演技,整部剧出色的剧本也起到了关键的作用。笔者在平日追剧之余,也尝试通过机器学习算法对人民的名义的部分剧集文本内容进行了文本分析,希望从数据的角度得到一些输入。
利用MaxCompute内建函数及UDTF转换json格式日志数据
本文介绍了如何使用MaxCompute UDF对JSON格式的日志进行信息提取和转换。
企查查支撑8000万+企业数据的大数据平台技术选型与实现
企查查终端所有企业工商信息均实时同步更新,汇集了目前国内市场中的80个产业链,8000个行业,6000个市场以及8000多万家企业数据。
MaxCompute(原ODPS) MapReduce常见问题解答
#### 1. 作业出现ClassNotFoundException和NoClassDefFoundError异常失败? A: 对于ClassNotFoundException异常,一般是依赖的class不在你的jar包中,需要把依赖的库打到作业jar包中或者单独上传,并在-resources中指
赋能平台、提效工具、场景化应用,地产大数据玩转有诀窍
在2017在线峰会——票选最美云上大数据暨大数据技术峰会上,来自明源云的刘峥分享了整个的地产行业的趋势以及探索应用实践。他主要从行业趋势和应用实践两个方面进行了分享。他详细的分享了数据管理平台DMP平台的基础层、画像层、算法层、展示层的架构设计,并通过应用场景诠释了大数据在地产行业的作用。
技术与架构,解析如何将大数据最快落地到实践
3月9日14点,业内首个结合技术与应用的在线大数据技术峰会即将展开,届时6位阿里技术大咖与4位行业资深实践者将从技术与业务两个方面,与大家探讨大数据如何最快落地到实践。较为有看点的是: 最深入的实践:本次在线峰会上,6个阿里规模的大数据实践将被深入分享,包括大数据平台的性能调优、流式增量计算、持续发布与演进、机器学习平台打造等。
是时候放弃 Spark Streaming, 转向 Structured Streaming 了
正如在之前的那篇文章中 Spark Streaming 设计原理 中说到 Spark 团队之后对 Spark Streaming 的维护可能越来越少,Spark 2.4 版本的 Release Note 里面果然一个 Spark Streaming 相关的 ticket 都没有。
[干货]作为大数据入门者,你不得不知道的2017杭州云栖大会
2017杭州云栖大会于10月14日完美闭幕,据说今年6W+人的技术盛宴(我们先不追究具体多少人)。大家可能更多的只知道马老师谈及到阿里巴巴达摩院、听到各种刷脸支付的高科技、各种数据大脑的发布,但是我觉得作为一个大数据入门者,你只知道这些远远不够!
美甲帮:玩转指甲上的大数据平台
美甲帮APP目前有几百万的用户,然而不同用户喜好和动机不同,譬如是想提升美甲技艺,还是想通过美甲图片选款,或者是想在商城里购买美甲产品,如何挖掘用户需求并以此进行精准化营销或个性化推荐,提升客户体验同时又可以增加收入,这些都是美甲帮最关注的问题。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。