【AI征文】DeepRec初识

简介: 经历6年时间,在各团队的努力下,阿里巴巴集团大规模稀疏模型训练/预测引擎DeepRec正式对外开源,助力开发者提升稀疏模型训练性能和效果。

一 DeepRec是什么

image.png

DeepRec(PAI-TF)是阿里巴巴集团统一的大规模稀疏模型训练/预测引擎,广泛应用于淘宝、天猫、阿里妈妈、高德、淘特、AliExpress、Lazada等,支持了淘宝搜索、推荐、广告等核心业务,支撑着千亿特征、万亿样本的超大规模稀疏训练。

DeepRec在分布式、图优化、算子、Runtime等方面对稀疏模型进行了深度性能优化,同时提供了稀疏场景下特有的Embedding相关功能。

DeepRec项目从2016年开发至今,由阿里巴巴集团内AOP团队、XDL团队、PAI团队、RTP团队以及蚂蚁集团AIInfra团队共建,并且得到了淘宝推荐算法等多个业务算法团队的支持。DeepRec的研发也得到了Intel CESG软件团队、Optane团队和PSU团队,NVIDIA GPU计算专家团队及Merlin HughCTR团队的支持。

二 DeepRec架构设计原则

在TensorFlow引擎上支持大规模稀疏特征,业界有多种实现方式,其中最常见的方式是借鉴了ParameterServer的架构实现,在TensorFlow之外独立实现了一套ParameterServer和相关的优化器,同时在TensorFlow内部通过bridge的方式桥接了两个模块。这个做法有一定的好处,比如PS的实现会比较灵活,但也存在一些局限性。

DeepRec采取了另一种架构设计方式,遵循“视整个训练引擎为一个系统整体”的架构设计原则。TensorFlow是一个基于Graph的静态图训练引擎,在其架构上有相应的分层,比如最上层的API层、中间的图优化层和最下层的算子层。TensorFlow通过这三层的设计去支撑上层不同Workload的业务需求和性能优化需求。

DeepRec也坚持了这一设计原则,基于存储/计算解耦的设计原则在Graph层面引入EmbeddingVariable功能;基于Graph的特点实现了通信的算子融合。通过这样的设计原则,DeepRec可以支持用户在单机、分布式场景下使用同一个优化器的实现和同一套EmbeddingVariable的实现;同时在Graph层面引入多种优化能力,从而做到独立模块设计所做不到的联合优化设计。

三DeepRec主要特征

image.png

  1. 动态弹性特征
  2. 基于特征频率的动态弹性维度
  3. 异步训练框架StarServer
  4. 同步训练框架HybridBackend
  5. Embedding多级混合存储
  6. 图优化-结构化特征
  7. Runtime优化-PRMalloc

DeepRec从2016年起深耕至今,支持了淘宝搜索、推荐、广告等核心业务,沉淀了大量优化的算子、图优化、Runtime优化、编译优化以及高性能分布式训练框架,在稀疏模型的训练方面有着优异性能的表现。并且沉淀了稀疏场景下的动态弹性特征、动态维度弹性特征、多Hash弹性特征等功能,能够不同程度的提高稀疏模型的效果。作为阿里巴巴集团内稀疏场景的统一训练引擎,是AOP团队、XDL团队、PAI团队、AIS团队合作共建的项目。除此之外,DeepRec得到了Intel、NV相关团队的支持,针对稀疏场景下的算子、子图、以及针对硬件特点进行了深度定制优化

目录
相关文章
|
存储 人工智能 搜索推荐
|
存储 人工智能 并行计算
喜马拉雅基于DeepRec构建AI平台实践
快速落地大模型训练和推理能力,带来业务指标和后续算法优化空间的显著提升。喜马拉雅AI云,是面向公司人员提供的一套从数据、特征、模型到服务的全流程一站式算法工具平台。
|
存储 人工智能 搜索推荐
【AI征文】对DeepRec认识以及了解
对DeepRec认识以及了解
107488 6
【AI征文】对DeepRec认识以及了解
|
人工智能 Ubuntu Shell
【AI征文】DeepRec编译过程中新手最容易踩的3个坑
3个坑分别是: 一、windows不能通过Docker Desktop编译 二、没有改官方代码的目录导致名称占用 三、因不明原因导致configure能查找到,但是无法使用
700 1
【AI征文】DeepRec编译过程中新手最容易踩的3个坑
|
存储 人工智能 算法
|
机器学习/深度学习 人工智能 搜索推荐
阿里巴巴宣布加入 Linux Foundation AI&Data 基金会,捐赠首个开源项目 DeepRec
持续加大对AI和大数据技术的投入以促进相关开源建设。
|
存储 人工智能 TensorFlow
|
2月前
|
消息中间件 人工智能 安全
云原生进化论:加速构建 AI 应用
本文将和大家分享过去一年在支持企业构建 AI 应用过程的一些实践和思考。
583 40
|
2月前
|
人工智能 运维 Kubernetes
Serverless 应用引擎 SAE:为传统应用托底,为 AI 创新加速
在容器技术持续演进与 AI 全面爆发的当下,企业既要稳健托管传统业务,又要高效落地 AI 创新,如何在复杂的基础设施与频繁的版本变化中保持敏捷、稳定与低成本,成了所有技术团队的共同挑战。阿里云 Serverless 应用引擎(SAE)正是为应对这一时代挑战而生的破局者,SAE 以“免运维、强稳定、极致降本”为核心,通过一站式的应用级托管能力,同时支撑传统应用与 AI 应用,让企业把更多精力投入到业务创新。
469 30
|
3月前
|
人工智能 安全 中间件
阿里云 AI 中间件重磅发布,打通 AI 应用落地“最后一公里”
9 月 26 日,2025 云栖大会 AI 中间件:AI 时代的中间件技术演进与创新实践论坛上,阿里云智能集团资深技术专家林清山发表主题演讲《未来已来:下一代 AI 中间件重磅发布,解锁 AI 应用架构新范式》,重磅发布阿里云 AI 中间件,提供面向分布式多 Agent 架构的基座,包括:AgentScope-Java(兼容 Spring AI Alibaba 生态),AI MQ(基于Apache RocketMQ 的 AI 能力升级),AI 网关 Higress,AI 注册与配置中心 Nacos,以及覆盖模型与算力的 AI 可观测体系。
947 48