【笔记】最佳实践—如何优化数据全量抽取

简介: 本文介绍了在应用内通过代码高效抽取数据的方法。

简介

数据抽取是指通过代码或者数据导出工具,从PolarDB-X中批量读取数据的操作。主要包括以下场景:

  • 通过数据导出工具将数据全量抽取到下游系统。PolarDB-X支持多种数据导出工具,更多内容请参考数据导入导出
  • 在应用内处理数据或者批量的将查询结果返回给用户浏览时,不能依赖外部工具,必须在应用内通过代码完成数据全量抽取。

本文主要介绍在应用内通过代码高效抽取数据的方法,根据是否一次性读取全量数据,分为全量抽取和分页查询。

全量抽取场景

全量抽取使用的SQL通常不包含表的拆分键,以全表扫描的方式执行,随着读取数据量的增加,数据抽取操作的执行时间线性增长。为了避免占用过多网络/连接资源,可以使用HINT直接下发查询语句,从物理分片中拉取数据。以下示例采用JAVA代码编写,完整使用方法参考 NODE HINT


public static void extractData(Connection connection, String logicalTableName, Consumer<ResultSet> consumer)
    throws SQLException {
    final String topology = "show topology from {0}";
    final String query = "/*+TDDL:NODE({0})*/select * from {1}";
    try (final Statement statement = connection.createStatement()) {
        final Map<String, List<String>> partitionTableMap = new LinkedHashMap<>();
        // Get partition id and physical table name of given logical table
        try (final ResultSet rs = statement.executeQuery(MessageFormat.format(topology, logicalTableName))) {
            while (rs.next()) {
                partitionTableMap.computeIfAbsent(rs.getString(2), (k) -> new ArrayList<>()).add(rs.getString(3));
            }
        }
        // Serially extract data from each partition
        for (Map.Entry<String, List<String>> entry : partitionTableMap.entrySet()) {
            for (String tableName : entry.getValue()) {
                try (final ResultSet rs = statement
                    .executeQuery(MessageFormat.format(query, entry.getKey(), tableName))) {
                    // Consume data
                    consumer.accept(rs);
                }
            }
        }
    }
}

分页查询场景

向用户展示列表信息时,需要分页来提高页面的加载效率,避免返回过多冗余信息,用于处理分页显示需求的查询,称为分页查询。关系型数据库没有直接提供分段返回表中数据的能力,高效的实现分页查询,还需要结合数据库本身的特点来设计查询语句。

以MySQL为例,分页查询最直观的实现方法,是使用limit offset,pageSize来实现,例如如下查询:


select * from t_order where user_id = xxx order by gmt_create, id limit offset, pageSize

因为gmt_create可能重复,所以order by时应加上id,保证结果顺序的确定性。


说明 该方案在表规模较小的时候,能够正常运行。当t_order表增长到十万级,随着页数增加,执行速度明显变慢,可能降到几十毫秒的量级,如果数据量增长到百万级,则耗时达到秒级,数据量继续增长,耗时最终会变得不可接受。

问题分析

假设我们在user_id, gmt_create上创建了局部索引,由于只有user_id上的条件,每次需要扫描的总数据量为offset + pageSize ,随着offset的增大逐渐接近全表扫描,导致耗时增加。并且在分布式数据库中,全表排序的吞吐无法通过增加DN数量来提高。

改进方案1

每次获取下一页记录时,指定从上次结束的位置继续往后取,这样不需要设置offset ,能够避免出现全表扫描的情况。看一个按id进行分页查询的例子:


select * from t_order where id > lastMaxId order by id limit pageSize

第一次查询不指定条件,后续查询则传入前一次查询的最大id,在执行时,数据库首先在索引上定位到lastMaxId的位置,然后连续返回pageSize条记录即可,非常高效。


说明 当id为主键或者唯一键时,改进方案1可以达到分页查询的效果,也有不错的性能。但缺点也比较明显,当id上有重复值时,可能会漏掉部分记录。

改进方案2

MySQL支持通过 Row Constructor Expression实现多列比较的语义(PolarDB-X同样支持)。


(c2,c3) > (1,1)

等价于
c2 > 1 OR ((c2 = 1) AND (c3 > 1))

因此,可以用下面的方法实现分页查询语义:


select * from t_order 
where user_id = xxx and (gmt_create, id) > (lastMaxGmtCreate, lastMaxId)
order by user_id, gmt_create, id limit pageSize

第一次查询不指定条件,后续查询则传入前一次查询的最大gmt_create和id,通过Row Constructor Expression正确处理gmt_create存在重复的情况。


说明 示例中,为了提高查询性能,我们在user_id和gmt_create上建立联合索引,并在order by中加入user_id提示优化器可以通过索引来消除排序。由于Row Constructor Expression包含null值会导致表达式求值结果为null,当存在null值时需要使用OR表达式。PolarDB-X目前只在Row Constructor Expression仅包含拆分键时才将其用于分区裁剪,其他场景同样需要使用OR表达式。

结合上述分析,给出一个PolarDB-X上分页查询的最佳实践:


-- lastMaxGmtCreate is not null 
select * from t_order
where user_id = xxx
and (
(gmt_create > lastMaxGmtCreate)
or ((gmt_create = lastMaxGmtCreate) and (id > lastMaxId))
)
order by user_id, gmt_create, id limit pageSize
-- lastMaxGmtCreate is null
select * from t_order
where user_id = xxx
and (
(gmt_create is not null)
or (gmt_create is null and id > lastMaxId)
)
order by user_id, gmt_create, id limit pageSize
相关文章
|
4月前
|
前端开发 Java API
2025 年 Java 全栈从环境搭建到项目上线实操全流程指南:Java 全栈最新实操指南(2025 版)
本指南涵盖2025年Java全栈开发核心技术,从JDK 21环境搭建、Spring Boot 3.3实战、React前端集成到Docker容器化部署,结合最新特性与实操流程,助力构建高效企业级应用。
1460 1
|
4月前
|
弹性计算 负载均衡 安全
阿里云轻量应用服务器与ECS区别
阿里云轻量应用服务器与ECS云服务器对比:轻量版适合新手和小型应用,套餐化设计,含大流量,易上手但性能和灵活性有限;ECS为专业版,配置灵活,性能强,适合企业级应用,但操作复杂,生态丰富,按需计费。两者定位不同,适用于不同场景。
|
5月前
|
NoSQL 安全 Redis
Docker Compose :从入门到企业级部署
Docker Compose 是用于定义和运行多容器应用的工具,支持服务、网络和卷三大核心要素。通过简洁的 YAML 文件,可实现应用的快速部署与管理,适用于开发、测试及生产环境。
442 1
多态和动态绑定的区别是什么?
【10月更文挑战第14天】多态和动态绑定是面向对象编程中两个重要的概念,但它们有着不同的含义和作用。
289 57
|
Arthas 监控 数据可视化
JVM监控工具
Arthas 是一款线上监控诊断产品,通过全局视角实时查看应用 load、内存、gc、线程的状态信息,并能在不修改应用代码的情况下,对业务问题进行诊断,包括查看方法调用的出入参、异常,监测方法执行耗时,类加载信息等,大大提升线上问题排查效率。
229 0
|
SQL 关系型数据库 MySQL
如何确认SQL查询是否使用了索引:详细步骤与技巧
在数据库管理和优化中,确认SQL查询是否有效利用了索引是提升性能的关键步骤
1400 0
|
弹性计算 Java 网络协议
……企业搭建门户网站需要考虑的事情就很多了?
企业门户网站不同于普通网站,它不仅是品牌形象的展示,还集品牌宣传、销售、服务、互动、数据营销等多功能于一体。企业搭建门户需考虑多地访客的访问速度、定制开发及高昂成本。为解决这些问题,中小企业转向云服务,如阿里云提供的解决方案,利用云效流水线自动化构建和发布,通过ROS快速创建ECS,结合DNS解析和CDN加速,实现高效低成本的部署。此方案简化了上线的流程,但完整的开发还包括设计、开发、测试等环节在本解决方案中没有体现。
584 1
……企业搭建门户网站需要考虑的事情就很多了?