最佳实践—如何优化Batch Insert

简介: Batch Insert语句是常见的数据库写入数据的方式,PolarDB-X兼容MySQL协议和语法,Batch Insert语法为:
INSERT [IGNORE] [INTO] table_name(column_name, ...) VALUES (value1, ...), (value2, ...), ...;

影响Batch Insert性能的主要因素包括:

  1. batch size
  2. 并行度
  3. 分片数目
  4. 列数目
  5. GSI的数目
  6. sequence数目

对于分片数目、列数目、GSI数目、sequence数目等内需因素,根据实际需求进行设置,并且常常会和读性能相互影响,例如GSI数目较多情况下,写入性能肯定会下降,但是对读性能有提升。本文不详细讨论这些因素的影响,主要聚焦于batch size和并行度的合理设置。

测试环境

本文档的测试环境见下表:

环境 参数
PolarDB-X版本 polarx-kernel_5.4.11-16279028_xcluster-20210802
节点规格 16核64GB
节点个数 4

测试的表用例:


CREATE TABLE `sbtest1` (

`id` int(11) NOT NULL,
`k` int(11) NOT NULL DEFAULT '0',
`c` char(120) NOT NULL DEFAULT '',
`pad` char(60) NOT NULL DEFAULT '',
PRIMARY KEY (`id`),
KEY `k_1` (`k`)
) ENGINE = InnoDB DEFAULT CHARSET = utf8mb4;

Batch特性:BATCH_INSERT_POLICY=SPLIT

PolarDB-X针对数据批量写入,为保障更好的并发性,对Batch Insert进行了优化,当单个Batch Insert语句大小超过256K时,PolarDB-X会将Batch Insert语句动态拆分成多个小Batch,多个小Batch之间串行执行,这个特性称为SPLIT。

通过BATCH_INSERT_POLICY=SPLIT的机制,在保障最佳性能的同时,减少PolarDB-X并行执行Batch Insert的代价,尽可能规避分布式下多节点的负载不均衡。

相关参数:

  1. BATCH_INSERT_POLICY,可选SPLIT/NONE,默认值为SPLIT,代表默认启用动态拆分Batch。
  2. MAX_BATCH_INSERT_SQL_LENGTH,默认值256,单位KB。代表触发动态拆分Batch的SQL长度阈值为256K。
  3. BATCH_INSERT_CHUNK_SIZE_DEFAULT,默认值200。代表触发动态拆分Batch时,每个拆分之后的小Batch的批次大小。

关闭BATCH_INSERT_POLICY=SPLIT机制,可通过如下hint语句/+TDDL:CMD_EXTRA(BATCH_INSERT_POLICY=NONE)/ 。 此参数的目标是关闭BATCH_INSERT_POLICY策略,这样才可以保证batch size在PolarDB-X执行时不做自动拆分,可用于验证batch size为2000、5000、10000下的性能,从测试的结果来看batch size超过1000以后提升并不明显。

单表的性能基准

在分布式场景下单表只会在一个主机上,其性能可以作为一个基础的性能基线,用于评测分区表的水平扩展的能力,分区表会将数据均匀分布到多台主机上。

测试方法为对PolarDB-X中的单表进行Batch Insert操作,单表的数据只会存在一个数据存储节点中,PolarDB-X会根据表定义将数据写入到对应的数据存储节点上。

场景一:batch size

参数配置:

  • 并行度:16
  • 列:4
  • gsi:无
  • sequence:无
测试项 batch size 1 10 100 500 1000 2000 5000 10000
PolarDB-X【单表】 性能(行每秒) 5397 45653 153216 211976 210644 215103 221919 220529

场景二:并行度

参数配置:

  • batch size:1000
  • 列:4
  • gsi:无
  • sequence:无
测试项 thread 1 2 4 8 16 32 64 128
PolarDB-X【单表】 性能(行每秒) 22625 41326 76052 127646 210644 223431 190138 160858

测试总结

对于单表的测试,推荐batch size为1000,并行度为16~32时整体性能比较好。在测试batch size为2000、5000、10000时,需要添加hint参数来关闭SPLIT特性,从测试的结果来看batch size超过1000以后提升并不明显。示例:


/+TDDL:CMD_EXTRA(BATCH_INSERT_POLICY=NONE)/

分区表的性能基准

Batch size和并行度都会影响Batch Insert的性能,下面对这两个因素分开进行测试分析。

场景一:batch Size

在数据分片的情况下,由于包含拆分函数,Batch Insert语句会经过拆分函数分离values,下推到物理存储上的batch size会改变,示意图如下图所示。113.png

INSERT [IGNORE] [INTO] table_name(column_name, ...) VALUES (value1, ...), (value2, ...), ...;

影响Batch Insert性能的主要因素包括:

  1. batch size
  2. 并行度
  3. 分片数目
  4. 列数目
  5. GSI的数目
  6. sequence数目

对于分片数目、列数目、GSI数目、sequence数目等内需因素,根据实际需求进行设置,并且常常会和读性能相互影响,例如GSI数目较多情况下,写入性能肯定会下降,但是对读性能有提升。本文不详细讨论这些因素的影响,主要聚焦于batch size和并行度的合理设置。

测试环境

本文档的测试环境见下表:

环境 参数
PolarDB-X版本 polarx-kernel_5.4.11-16279028_xcluster-20210802
节点规格 16核64GB
节点个数 4

测试的表用例:


CREATE TABLE `sbtest1` (
`id` int(11) NOT NULL,
`k` int(11) NOT NULL DEFAULT '0',
`c` char(120) NOT NULL DEFAULT '',
`pad` char(60) NOT NULL DEFAULT '',
PRIMARY KEY (`id`),
KEY `k_1` (`k`)
) ENGINE = InnoDB DEFAULT CHARSET = utf8mb4;

Batch特性:BATCH_INSERT_POLICY=SPLIT

PolarDB-X针对数据批量写入,为保障更好的并发性,对Batch Insert进行了优化,当单个Batch Insert语句大小超过256K时,PolarDB-X会将Batch Insert语句动态拆分成多个小Batch,多个小Batch之间串行执行,这个特性称为SPLIT。

通过BATCH_INSERT_POLICY=SPLIT的机制,在保障最佳性能的同时,减少PolarDB-X并行执行Batch Insert的代价,尽可能规避分布式下多节点的负载不均衡。

相关参数:

  1. BATCH_INSERT_POLICY,可选SPLIT/NONE,默认值为SPLIT,代表默认启用动态拆分Batch。
  2. MAX_BATCH_INSERT_SQL_LENGTH,默认值256,单位KB。代表触发动态拆分Batch的SQL长度阈值为256K。
  3. BATCH_INSERT_CHUNK_SIZE_DEFAULT,默认值200。代表触发动态拆分Batch时,每个拆分之后的小Batch的批次大小。

关闭BATCH_INSERT_POLICY=SPLIT机制,可通过如下hint语句/+TDDL:CMD_EXTRA(BATCH_INSERT_POLICY=NONE)/ 。 此参数的目标是关闭BATCH_INSERT_POLICY策略,这样才可以保证batch size在PolarDB-X执行时不做自动拆分,可用于验证batch size为2000、5000、10000下的性能,从测试的结果来看batch size超过1000以后提升并不明显。

单表的性能基准

在分布式场景下单表只会在一个主机上,其性能可以作为一个基础的性能基线,用于评测分区表的水平扩展的能力,分区表会将数据均匀分布到多台主机上。

测试方法为对PolarDB-X中的单表进行Batch Insert操作,单表的数据只会存在一个数据存储节点中,PolarDB-X会根据表定义将数据写入到对应的数据存储节点上。

场景一:batch size

参数配置:

  • 并行度:16
  • 列:4
  • gsi:无
  • sequence:无
测试项 batch size 1 10 100 500 1000 2000 5000 10000
PolarDB-X【单表】 性能(行每秒) 5397 45653 153216 211976 210644 215103 221919 220529

场景二:并行度

参数配置:

  • batch size:1000
  • 列:4
  • gsi:无
  • sequence:无
测试项 thread 1 2 4 8 16 32 64 128
PolarDB-X【单表】 性能(行每秒) 22625 41326 76052 127646 210644 223431 190138 160858

测试总结

对于单表的测试,推荐batch size为1000,并行度为16~32时整体性能比较好。在测试batch size为2000、5000、10000时,需要添加hint参数来关闭SPLIT特性,从测试的结果来看batch size超过1000以后提升并不明显。示例:


/+TDDL:CMD_EXTRA(BATCH_INSERT_POLICY=NONE)/

分区表的性能基准

Batch size和并行度都会影响Batch Insert的性能,下面对这两个因素分开进行测试分析。

场景一:batch Size

在数据分片的情况下,由于包含拆分函数,Batch Insert语句会经过拆分函数分离values,下推到物理存储上的batch size会改变,示意图如下图所示。

相关文章
|
SQL 缓存 监控
带你读《Apache Doris 案例集》——03 Apache Doris 在金融壹账通指标中台的应用实践(2)
带你读《Apache Doris 案例集》——03 Apache Doris 在金融壹账通指标中台的应用实践(2)
495 1
带你读《Apache Doris 案例集》——03  Apache   Doris  在金融壹账通指标中台的应用实践(2)
|
监控
SMoA: 基于稀疏混合架构的大语言模型协同优化框架
通过引入稀疏化和角色多样性,SMoA为大语言模型多代理系统的发展开辟了新的方向。
408 6
SMoA: 基于稀疏混合架构的大语言模型协同优化框架
|
敏捷开发 存储 数据可视化
解锁团队高效秘诀:5款顶尖PHP任务管理工具推荐
在现代企业中,高效的任务管理系统已成为不可或缺的工具,特别是在团队协作和项目管理中。PHP任务管理系统因其灵活性、开源性和易用性,备受企业管理者、项目团队和开发人员青睐。本文将介绍什么是PHP任务管理系统,其应用场景,以及推荐5款顶级的PHP任务管理系统,帮助企业提升效率和管理能力。
240 2
|
消息中间件 分布式计算 druid
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(二)
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(二)
150 2
|
设计模式 算法 Java
【设计模式】springboot3项目整合模板方法深入理解设计模式之模板方法(Template Method)
【设计模式】springboot3项目整合模板方法深入理解设计模式之模板方法(Template Method)
|
缓存 Java 应用服务中间件
苍穹外卖知识点总结(springboot)
苍穹外卖知识点总结(springboot)
3150 0
|
监控 中间件 关系型数据库
MyCAT、ShardingSphere和Mocc这三个中间件的优缺点对比
MyCAT、ShardingSphere和Mocc这三个中间件的优缺点对比
1406 0
|
C语言
C语言字符串、宏定义及主函数介绍
C语言字符串、宏定义及主函数介绍
539 0
Net: Board Net Initialization Failed No ethernet found.
Net: Board Net Initialization Failed No ethernet found.
648 0
|
前端开发 小程序
UniApp 解决 style 绑定 css 变量,支持 var() 使用
UniApp 解决 style 绑定 css 变量,支持 var() 使用
2896 0