Bi-GCN:基于双向图卷积网络的社交媒体谣言检测

简介: Bi-GCN:基于双向图卷积网络的社交媒体谣言检测

论文标题:Rumor Detection on Social Media with Bi-Directional Graph Convolutional Networks


论文链接:https://arxiv.org/abs/2001.06362


论文来源:AAAI 2020


一、概述


传统的谣言检测方法缺乏从谣言的传播(propagation)扩散(propagation)结构中学习的高层表示。最近的研究已经开始从谣言的传播结构中学习高层表示,比如RvNN等方法。然而这些方法只关注谣言的传播却忽略了谣言扩散的影响。虽然一些方法已经开始尝试使用CNN来引入谣言扩散信息,但是基于CNN的方法只能捕获局部邻域的相关特征,却不能处理图或树结构中的全局结构关系,因此谣言扩散的全局结构特征在这些方法中被忽略了。事实上CNN也并非被设计用来从结构化的数据中学习高层特征,不过图卷积网络(Graph Convolutional Network,GCN)可以做到。


GCN已经在很多领域取得了成功,不过我们不能简单地将GCN应用到谣言检测任务上。如下图(a)所示,GCN,或者称为无向GCN(UD-GCN)聚合信息只依赖相关帖子的关系却丢失了贴子之间的顺序关系:


QQ截图20220612093133.png

                                                    GCN


UD-GCN虽然可以处理谣言扩散的全局结构特征,但是忽略了谣言传播的方向。沿着关系链的深度传播与社区群体内部的广度扩散是谣言的连个主要特点,因此需要一个方法来同时处理这两种传播方式。


本文提出了Bi-GCN方法来同时处理谣言的传播与扩散。Bi-GCN同时在top-down和bottom-up的图结构上进行操作,具体的通过top-down GCN(TD-GCN)来处理谣言的传播,以及通过bottom-up GCN(BU-GCN)来处理谣言的扩散。如上图(b)(c)所示,TD-GCN从父亲节点到子节点前向传播信息来模拟谣言的传播,BU-GCN从节点的子节点聚合信息来表示谣言的扩散过程。


二、方法


  1. 问题陈述


QQ截图20220611200101.png


  1. 图卷积网络


GCN的卷积操作被看做是一个消息传递(message-passing)的结构:

QQ截图20220611200330.png

QQ截图20220611200654.png

  1. Bi-GCN谣言检测模型

Bi-GCN的核心思想是学习谣言传播和扩散的高层表示,在本文中采用的GCN都是用两层上述图卷积层。下图展示了模型的整个流程,主要分为4步:

QQ截图20220612093211.png

                                                           Bi-GCN

  • 构建传播和扩散图


QQ截图20220611200910.png

  • 计算高层节点表示

QQ截图20220611201019.png


  • 根节点特征增强


QQ截图20220611201122.png


  • 谣言分类的传播和扩散表示

谣言的传播和扩散表示通过聚合TD-GCN和BU-GCN的节点表示来获得,采用mean-pooling的方式:

QQ截图20220611201154.png


然后拼接这两个表示:


QQ截图20220611201240.png


三、实验


  1. 数据集


在Weibo,Twitter15,Twitter16三个数据集上进行实验,数据集统计如下:

QQ截图20220612093307.png

                                                  数据集

  1. 性能对比


以下是在三个数据集上的结果:


QQ截图20220612093401.png

                                            Weibo

QQ截图20220612093438.png

                                  Twitter15和Twitter16

  1. 消融实验


对比不同架构和有无根节点特征增强对模型性能的影响:

QQ截图20220612093532.png

                                             消融实验

  1. 谣言早期检测


谣言传播的不同时期所达到的模型性能:


QQ截图20220612093555.png

                                                     谣言早期检测



相关文章
|
25天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
88 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
2月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
310 55
|
2月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
203 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
22天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
2月前
|
机器学习/深度学习 资源调度 算法
图卷积网络入门:数学基础与架构设计
本文系统地阐述了图卷积网络的架构原理。通过简化数学表述并聚焦于矩阵运算的核心概念,详细解析了GCN的工作机制。
147 3
图卷积网络入门:数学基础与架构设计
|
2月前
|
运维 监控 安全
公司监控软件:SAS 数据分析引擎驱动网络异常精准检测
在数字化商业环境中,企业网络系统面临复杂威胁。SAS 数据分析引擎凭借高效处理能力,成为网络异常检测的关键技术。通过统计分析、时间序列分析等方法,SAS 帮助企业及时发现并处理异常流量,确保网络安全和业务连续性。
60 11
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
423 7
|
3月前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
107 1