Python数据分析 | Pandas数据分组与操作

简介: Pandas中可以借助groupby操作对Dataframe分组操作,本文介绍groupby的基本原理及对应的agg、transform和apply方法与操作。

ShowMeAI研究中心

ShowMeAI研究中心

作者:韩信子@ShowMeAI
教程地址http://www.showmeai.tech/tutorials/33
本文地址http://www.showmeai.tech/article-detail/148
声明:版权所有,转载请联系平台与作者并注明出处

当我们提到python数据分析的时候,大部分情况下都会使用Pandas进行操作。pandas整个系列覆盖以下内容:

一、Pandas数据分组与操作

在我们进行业务数据分析时,经常要对数据根据1个或多个字段分为不同的组(group)进行分析处理。如电商领域可能会根据地理位置分组,社交领域会根据用户画像(性别、年龄)进行分组,再进行后续的分析处理。

Pandas中可以借助groupby操作对Dataframe分组操作,本文介绍groupby的基本原理及对应的agg、transform和apply方法与操作。

我们先模拟产出1个Dataframe:

import numpy as np
import pandas as pd

company=["A","B","C"]

data=pd.DataFrame({
    "company":[company[x] for x in np.random.randint(0,len(company),10)],
    "salary":np.random.randint(5,50,10),
    "age":np.random.randint(15,50,10)})

二、Groupby分组及应用

2.1 分组

pandas实现分组操作的很简单,只需要把分组的依据(字段)放入groupby中,例如下面示例代码基于company分组:

group = data.groupby("company")

经过groupby处理之后我们会得到一个DataFrameGroupBy对象:

group
# 输出
<pandas.core.groupby.generic.DataFrameGroupBy object at 0x000001C67C072BE0>

这个生成的DataFrameGroupBy是什么?data经过groupby处理后发生了什么?

上面返回的Groupby处理结果是内存地址,并不利于直观地理解,我们可以把group转换成list的形式来看一看内部数据和整个过程:

list(group)

转换成列表的形式后,可以看到,列表由三个元组组成,每个元组中:

  • 第一个元素是组别(这里是按照company进行分组,所以最后分为了A,B,C)
  • 第二个元素的是对应组别下的DataFrame

总结一下,groupby将原有的DataFrame按照指定的字段(这里是company),划分为若干个分组DataFrame。groupby之后可以进行下一步操作,注意,在groupby之后的一系列操作(如agg、apply等),均是基于子DataFrame的操作。

下面我们一起看看groupby之后的常见操作。

2.2 agg 聚合操作

聚合统计操作是groupby后最常见的操作,类比于SQL中我们会对数据按照group做聚合,pandas中通过agg来完成。聚合操作可以用来求和、均值、最大值、最小值等,下表为Pandas中常见的聚合操作:

例如,计算不同公司员工的平均年龄和平均薪水,示例代码如下:

data.groupby("company").agg('mean')

或者针对不同字段做不同的计算处理,例如,要计算不同公司员工的平均年龄、薪水的中位数。可以利用字典进行聚合操作:

data.groupby('company').agg({'salary':'median','age':'mean'})

我们对agg聚合过程进行图解,如下所示:

2.3 transform变换

transform是另外一个pandas分组后会使用到的方法,我们举例来说明它的用法。

上述agg应用例子中,我们计算了不同公司员工的平均薪水,如果现在需要新增一列avg\_salary,代表员工所在的公司的平均薪水(相同公司的员工具有一样的平均薪水),我们就可以借助transform来完成。

要完成上述任务,我们需要先求得不同公司的平均薪水,再按照员工和公司的对应关系填充到对应的位置,使用之前学到的map方法可以拆解实现如下:

avg_salary_dict = data.groupby('company')['salary'].mean().to_dict()

data['avg_salary'] = data['company'].map(avg_salary_dict)

data

而transform方法可以帮助我们一行实现全过程:

data['avg_salary'] = data.groupby('company')['salary'].transform('mean')

data

下面对groupby+transform的过程做图解帮助理解:

注意图中大方框,展示了transform和agg不一样的计算过程:

  • agg:会计算得到A,B,C公司对应的均值并直接返回
  • transform:会对每一条数据求得相应的结果,同一组内的样本会有相同的值,组内求完均值后会按照原索引的顺序返回结果

2.4 apply方法

之前我们介绍过对Dataframe使用apply进行灵活数据变换操作处理的方法,它支持传入自定义函数,实现复杂数据操作。apply除了之前介绍的用法,也可以用在groupby后,我们一起来学习一下。

对于groupby后的apply,实际上是以分组后的子DataFrame作为参数传入指定函数的,基本操作单位是DataFrame,而之前介绍的apply的基本操作单位是Series。我们通过一个案例来理解一下。

加入我们需要获取各个公司年龄最大的员工的数据,可以通过以下代码实现:

def get_oldest_staff(x):
     df = x.sort_values(by = 'age',ascending=True)
     return df.iloc[-1,:]

oldest_staff = data.groupby('company',as_index=False).apply(get_oldest_staff)

oldest_staff

我们对上面的过程图解帮助理解:

本例中的apply传入函数的参数由Series变成这里的分组DataFrame。相比于agg和transform,apply方法拥有更大的灵活性,但它的运行效率会比agg和transform慢。所以,groupby之后怼数据做操作,优先使用agg和transform,其次再考虑使用apply进行操作。

资料与代码下载

本教程系列的代码可以在ShowMeAI对应的 github 中下载,可本地python环境运行。能访问Google的宝宝也可以直接借助google colab一键运行与交互操作学习哦!

本系列教程涉及的速查表可以在以下地址下载获取

拓展参考资料

ShowMeAI相关文章推荐

ShowMeAI系列教程推荐

showmeai

目录
相关文章
|
20天前
|
存储 人工智能 自然语言处理
Pandas数据应用:自然语言处理
本文介绍Pandas在自然语言处理(NLP)中的应用,涵盖数据准备、文本预处理、分词、去除停用词等常见任务,并通过代码示例详细解释。同时,针对常见的报错如`MemoryError`、`ValueError`和`KeyError`提供了解决方案。适合初学者逐步掌握Pandas与NLP结合的技巧。
57 20
|
15天前
|
机器学习/深度学习 存储 算法
Pandas数据应用:客户流失预测
本文介绍如何使用Pandas进行客户流失预测,涵盖数据加载、预处理、特征工程和模型训练。通过解决常见问题(如文件路径错误、编码问题、列名不一致等),确保数据分析顺利进行。特征工程中创建新特征并转换数据类型,为模型训练做准备。最后,划分训练集与测试集,选择合适的机器学习算法构建模型,并讨论数据不平衡等问题的解决方案。掌握这些技巧有助于有效应对实际工作中的复杂情况。
129 95
|
18天前
|
机器学习/深度学习 数据采集 JSON
Pandas数据应用:机器学习预处理
本文介绍如何使用Pandas进行机器学习数据预处理,涵盖数据加载、缺失值处理、类型转换、标准化与归一化及分类变量编码等内容。常见问题包括文件路径错误、编码不正确、数据类型不符、缺失值处理不当等。通过代码案例详细解释每一步骤,并提供解决方案,确保数据质量,提升模型性能。
140 88
|
12天前
|
数据采集 存储 供应链
Pandas数据应用:库存管理
本文介绍Pandas在库存管理中的应用,涵盖数据读取、清洗、查询及常见报错的解决方法。通过具体代码示例,讲解如何处理多样数据来源、格式不一致、缺失值和重复数据等问题,并解决KeyError、ValueError等常见错误,帮助提高库存管理效率和准确性。
94 72
|
16天前
|
数据采集 存储 算法
Pandas数据应用:市场篮子分析
市场篮子分析是一种用于发现商品间关联关系的数据挖掘技术,广泛应用于零售业。Pandas作为强大的数据分析库,在此领域具有显著优势。本文介绍了市场篮子分析的基础概念,如事务、项集、支持度、置信度和提升度,并探讨了数据预处理、算法选择、参数设置及结果解释中的常见问题与解决方案,帮助用户更好地进行市场篮子分析,为企业决策提供支持。
60 29
|
11天前
|
数据采集 供应链 数据可视化
Pandas数据应用:供应链优化
在当今全球化的商业环境中,供应链管理日益复杂。Pandas作为Python的强大数据分析库,能有效处理库存、物流和生产计划中的大量数据。本文介绍如何用Pandas优化供应链,涵盖数据导入、清洗、类型转换、分析与可视化,并探讨常见问题及解决方案,帮助读者在供应链项目中更加得心应手。
36 21
|
10天前
|
机器学习/深度学习 搜索推荐 数据挖掘
Pandas数据应用:广告效果评估
在数字化营销中,广告效果评估至关重要。Pandas作为Python的强大数据分析库,在处理广告数据时表现出色。本文介绍如何使用Pandas进行广告效果评估,涵盖数据读取、预览、缺失值处理、数据类型转换及常见报错解决方法,并通过代码案例详细解释。掌握这些技能,可为深入分析广告效果打下坚实基础。
37 17
|
17天前
|
机器学习/深度学习 BI 定位技术
Pandas数据应用:用户细分
用户细分是数据分析和商业智能中的关键步骤,通过将用户群体划分为不同子集,企业可以更精准地了解用户需求并制定营销策略。Pandas 是 Python 中常用的数据处理库,支持高效的数据操作。使用 Pandas 进行用户细分包括数据准备、清洗、特征工程、细分和结果分析等步骤。常见问题如数据类型不一致、内存不足等可通过相应方法解决。Pandas 简化了用户细分流程,帮助获取有价值的洞察。
55 24
|
19天前
|
数据采集 存储 数据处理
Pandas数据应用:时间序列预测
本文介绍了使用 Pandas 进行时间序列预测的方法,涵盖时间序列的基础概念、特征(如趋势、季节性等),以及数据处理技巧(如创建时间序列、缺失值处理和平滑处理)。同时,文章详细讲解了简单线性回归和 ARIMA 模型的预测方法,并针对常见问题(如数据频率不一致、季节性成分未处理)及报错提供了解决方案。通过这些内容,读者可以掌握时间序列预测的基本步骤和技巧。
55 27
|
14天前
|
机器学习/深度学习 数据采集 供应链
Pandas数据应用:销售预测
本文介绍如何使用Pandas进行销售预测。首先,通过获取、清洗和可视化历史销售数据,确保数据质量并理解其特征。接着,进行特征工程,构建线性回归等模型进行预测,并评估模型性能。最后,针对常见问题如数据类型不匹配、时间格式错误、内存不足和模型过拟合提供解决方案。掌握这些步骤,可有效提升销售预测的准确性,助力企业优化库存管理和提高客户满意度。
43 17