AI视频监控普及应用的三大挑战

简介: 视频监控在安全领域已经根深蒂固了几十年,但视频监控具有超越安全的价值这一观点正在被越来越多的业内人士认可和关注。

近年来,安防视频监控无论在软件还是硬件方面都迎来了重大的技术进步,各式各样的智能监控摄像头被投放到市场。

a34fdac6546f89b0d2c284ecb85dd197a67d57.jpg

不过,与任何新事物一样,人工智能视频监控也面临着一些限制其采用和发展的挑战。尽管有一些明显的优势可以将投资回报提高数倍,但一些客户仍然犹豫不决。

一般来说,几乎所有市场层面都需要额外的教育和意识培育,但知识鸿沟并不是唯一的问题。本文将简单分析一下现阶段AI 视频监控行业面临的主要挑战。

AI监控尚处浅层应用
视频监控作为各大机构和场所的核心安防系统之一,伴随着技术的发展和应用,视频监控摄像头不仅仅能够实现基础的安全防范功能,同时也是助力商业智能的重要工具。

Azena 营销副总裁 Fabio Marti 谈到,视频监控摄像头如今正成为越来越重要的物联网传感器设备,在商业智能、城市管理、工业监测等领域发挥着重要的作用,这已被公认为是智能安防行业的显著趋势。不过从普及应用的情况来看,监控摄像头依然主要被视为安全和监视工具,距离被纳入到企业的数字化运营工作中还有一段距离。”

用户培育尚待成熟
智能摄像头和人工智能分析的应用是市场趋势,市场正在接受这些可以处理复杂分析的强大边缘传感器的潜力。

“客户需要了解这些摄像头的真正潜力以及如何从中获得价值。”Marti 补充道。“此外,系统集成商和终端用户依然缺乏较为全面的数据科学专业知识,还无法帮助推动诸如利用智能摄像机系统生成有价值数据或提高运营效率之类的举措。”

根据 Hakimo 创始人兼首席执行官 Sam Joseph 的说法,最大的挑战是终端用户尚未习惯 AI 算法,因此,在某些情况下,他们对算法是否真的能在实践中发挥作用犹豫不决。

“不过越来越多的终端用户开始尝试采用人工智能解决方案,且随着时间的推移,他们也对这些算法越来越充满信心,因为他们能很清楚的感受到AI算法相较于传统方式带来的能效提升。”Joseph 补充道。

使用AI监控具有一定门槛
人工智能视频监控摄像头和智能训练一样好。Vicentive Systems的集成产品经理Dan Berg指出,限制人工智能在视频监控中应用的一个主要挑战是配置和微调分析所需的时间和成本。

“要想取得成功,集成组织需要找到合适的客户——一个在运营中理解人工智能需求并每天参与该技术的客户,”Berg表示。“成功部署人工智能分析系统需要集成商和终端用户有明确的目标和成功指标,以及耐心。”

结论
人工智能在视频监控中的应用将继续存在。在未来几年里,我们肯定会看到更多的技术进步,使安全摄像头更加智能。

但它们的采用速度可能没有业界希望的那么快。目前,安全行业变化缓慢,需要很长时间才能接受新技术,同时,安全设备的安全性考虑也是一个同样重要的问题。

为了让人工智能监控系统实现更多的市场渗透,有必要让用户端更多地了解AI监控系统的诸多应用优势,而这则有赖于解决方案提供商和集成商的积极宣扬推广。


本文转载自51CTO,本文一切观点和机器智能技术圈子无关。原文链接
免费体验百种AI能力以及试用热门离线SDK:【点此跳转】

相关文章
|
3天前
|
人工智能 JSON API
阿里云文档智能 & RAG解决方案:提升AI大模型业务理解与应用
阿里云推出的文档智能 & RAG解决方案,旨在通过先进的文档解析技术和检索增强生成(RAG)方法,显著提升人工智能大模型在业务场景中的应用效果。该方案通过文档智能(Document Mind)技术将非结构化文档内容转换为结构化数据,提取文档的层级树、样式和版面信息,并输出为Markdown和Json格式,为RAG提供语义分块策略。这一过程不仅解决了文档内容解析错误和切块丢失语义信息的问题,还优化了输出LLM友好的Markdown信息。方案的优势在于其多格式支持能力,能够处理包括Office文档、PDF、Html、图片在内的主流文件类型,返回文档的样式、版面信息和层级树结构。
24 2
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
思通数科AI平台在尽职调查中的技术解析与应用
思通数科AI多模态能力平台结合OCR、NLP和深度学习技术,为IPO尽职调查、融资等重要交易环节提供智能化解决方案。平台自动识别、提取并分类海量文档,实现高效数据核验与合规性检查,显著提升审查速度和精准度,同时保障敏感信息管理和数据安全。
27 11
|
3天前
|
人工智能 运维 NoSQL
云栖大会|多模+一体化,构建更高效的AI应用
在2024年云栖大会「NoSQL数据库」专场,多位知名企业和阿里云瑶池数据库团队的技术专家,共同分享了阿里云Lindorm、Tair、MongoDB和MyBase的最新进展与实践。Tair推出Serverless KV服务,解决性能瓶颈和运维难题;Lindorm助力AI和具身智能时代的多模数据处理;MongoDB云原生化提升开发效率;MyBase One打破云边界,提供云边端一体化服务。这些技术进展和最佳实践,展示了阿里云在NoSQL数据库领域的创新能力和广泛应用前景。
|
1天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗健康领域的应用与挑战####
本文旨在探讨人工智能(AI)技术在医疗健康领域的创新应用及其面临的主要挑战。通过深入分析AI如何助力疾病诊断、治疗方案优化、患者管理及药物研发,本文揭示了AI技术在提升医疗服务质量、效率和可及性方面的巨大潜力。同时,文章也指出了数据隐私、伦理道德、技术局限性等关键问题,并提出了相应的解决策略和未来发展方向。本文为医疗从业者、研究者及政策制定者提供了对AI医疗技术的全面理解,促进了跨学科合作与创新。 ####
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
医疗行业的语音识别技术解析:AI多模态能力平台的应用与架构
AI多模态能力平台通过语音识别技术,实现实时转录医患对话,自动生成结构化数据,提高医疗效率。平台具备强大的环境降噪、语音分离及自然语言处理能力,支持与医院系统无缝集成,广泛应用于门诊记录、多学科会诊和急诊场景,显著提升工作效率和数据准确性。
|
2天前
|
机器学习/深度学习 人工智能 算法
AI赋能大学计划·大模型技术与应用实战学生训练营——吉林大学站圆满结营
10月30日,由中国软件行业校园招聘与实习公共服务平台携手魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·吉林大学站圆满结营。
|
2天前
|
人工智能 自然语言处理 安全
AI技术在智能客服系统中的应用与挑战
【10月更文挑战第28天】本文将深入探讨人工智能(AI)技术在智能客服系统中的应用及其面临的挑战。我们将通过实例分析,了解AI如何改善客户服务体验,提高效率和降低成本。同时,我们也将关注AI在实际应用中可能遇到的问题,如语义理解、情感识别和数据安全等,并提出相应的解决方案。
|
数据采集 监控 网络协议
linux系统中利用QT实现视频监控的基本方法
linux系统中利用QT实现视频监控的基本方法
378 0
|
监控 定位技术 安全
Qt编写安防视频监控系统10-视频轮询
一、前言 视频轮询在视频监控系统中是一个基础的核心功能,尤其是上了大屏以后,这个功能是必须的,根据预先设定的轮询间隔逐个加载视频到预先设定的通道画面数中,轮询间隔、轮询画面数、轮询采用的码流类型(主码流、子码流)都可以在系统设置中进行统一设置,轮询的视频源采用摄像机表中的所有摄像机,当画面数不够的时候,其余留空显示即可,轮询到最后一个视频,重新从第一个开始轮询。
1634 0
|
6月前
|
存储 监控 安全
【亮剑】指导初学者如何搭建和使用网络视频监控系统。
【4月更文挑战第30天】本文指导初学者如何搭建和使用网络视频监控系统。核心设备包括摄像头(如固定、PTZ、多目、夜视)、存储选项(NVR、DVR、云存储)及网络交换机等。安装配置步骤涉及规划布局、安装摄像头、设置存储设备和软件配置。实时监控包括实时查看、接收警报和录像回放。理解设备功能、合理布局并细心操作,就能建立稳定监控体系。随着技术进步,未来监控系统将更智能、高效,保障安全。
554 0

热门文章

最新文章