C#开发学习人工智能的第一步

简介: 作为一个软件开发者,我们除了要学会复制,黏贴,还要学会调用API和优秀的开源类库。也许有人说C#做不了人工智能,如果你认可这种想法,那说明你的思想还是狭隘的。做不了人工智能的不是C#这种语言,而是你,我这种普通的程序员。

前言

作为一个软件开发者,我们除了要学会复制,黏贴,还要学会调用API和优秀的开源类库。

也许有人说C#做不了人工智能,如果你认可这种想法,那说明你的思想还是狭隘的。

做不了人工智能的不是C#这种语言,而是你,我这种普通的程序员。

做人工智能需要一定的学历背景,一定的数学基础和公司专项的资源供给;而这种机缘小之又小,你我既然是普通的程序员,就必然与此无缘。

但在人工智能如日中天的当下,接触深度学习是必然会发生的事情,所以我们要做的就是,学会调用相关的类库。

现在,让我们迈出C#学习人工智能的第一步,通过调用Affdex来锁定图片中人物的面部,然后将其截取出来。


准备工作

首先,我们需要先访问官网下载Affdex的Sdk。

在官网找中找到下载Affdex的Sdk的地方也是个挺困难的事。。。所以下载链接如下:

下载Affdex_Sdk网址:
https://knowledge.affectiva.com/docs/getting-started-with-the-emotion-sdk-for-windows#section-2-import-into-your-application

进入网页后,向下拉动滚动条,找到到下图所示位置,点击Download进行下载。

0.png


下载完成后得到Sdk,如下图:

1.png


下面,我们双击进行安装,不过安装SDK有一些限制,需要预先安装NET Framework4.0和C++ 2015。如果电脑里已经安装了,就不必担心了;如果安装的是C++2015-2017这类型的,则需要卸载了,重新安装C++2015的版本,否则Affdex的SDK将安装失败。

安装完成后,我们去安装目录找到Affdex.dll,affdex-native.dll,tensorflow.dll三个文件,如下图:

2.png


我们先将它们复制出来,等待使用。

简单的介绍一下,这三个类库中,Affdex.dll是可以被C#项目直接引用的,而另外两个文件是Affdex.dll的依赖文件;也就是说,affdex-native.dll,tensorflow.dll需要在生成时,输出到运行目录下。

有经验的朋友想必已经发现了,这里有个类库名叫tensorflow.dll,tensorflow是什么啊?稍微百度一下大家就会了解了,它是专门来做深度学习的。

也就是说Affdex是支持深度学习的。

----------------------------------------------------------------------------------------------------

现在我们来学习Affdex的使用。

首先我们新建一个WPF项目,然后引用Affdex.dll。

然后将项目的运行平台设置为64位,因为,这样处理图片的速度能快一点,如下图:

3.png

在Affdex中我们可以发现四个探头—VideoDetector,PhotoDetector,FrameDetector,CameraDetector。

在这里我们要处理的是图片,所以我们选择PhotoDetector,下面我们创建一个PhotoWindow.Xaml页面来使用PhotoDetector处理图片。


代码实现

首先,我们定义一个PhotoDetector的属性,用于处理图片。

然后我们在构造函数中对他进行实例化,代码如下:

private Affdex.PhotoDetector Detector { get; set; }
public PhotoWindow()
{
InitializeComponent();
uint maxNumFaces = 1;//最多识别图片中几张脸
Detector = new Affdex.PhotoDetector(maxNumFaces, Affdex.FaceDetectorMode.SMALL_FACES); 
Detector.setImageListener(this);
Detector.setProcessStatusListener(this);
Detector.start();
}

在上述代码中可以看到,除了初始化PhotoDetector,我们还做了一个图片监听设置setImageListener,那么图片监听是干什么的呢?

很简单,图片被PhotoDetector处理完,我们需要知道图片处理结果呀,而这个图片监听正是是用来返回图片处理结果的。

可以看到图片监听设置的入参是this,也就是说,需要把图片的处理结果返回给当前页面。

如果就这样写是会编译报错的,会提示setImageListener的入参错误。

我们查看setImageListener的入参,发现它的入参是一个ImageListener接口,即,setImageListener的入参是一个要实现了ImageListener接口的类。

到这里,我们就都明白了,现在我们让当前PhotoWindow.xaml窗体继承接口ImageListener,并实现接口ImageListener内的方法。

public partial class PhotoWindow : Window, Affdex.ImageListener
===========================================================================
public void onImageCapture(Affdex.Frame frame)
{
}
public void onImageResults(Dictionary<int, Face> faces, Affdex.Frame frame)
{
}

如上述代码所示,在我们实现的接口onImageResults里有两个参数:faces、frame。

其中faces是最重要的,这里包含Affdex分析图片的结果。

----------------------------------------------------------------------------------------------------

现在,Affdex的配置代码已经写完了,我们可以把图片读取出来调用Affdex处理了。

public PhotoWindow()
{
    InitializeComponent();
    uint maxNumFaces = 1;//最多识别图片中几张脸
    Detector = new Affdex.PhotoDetector(maxNumFaces, Affdex.FaceDetectorMode.SMALL_FACES);  
    Detector.setImageListener(this);
    Detector.start();
    byte[] bytes = FileHelper.FileToBytes(System.IO.Path.Combine(System.AppDomain.CurrentDomain.BaseDirectory, "timg.jpg"));
    BitmapSource bitmapSource = ImageHelper.BytesToBitmapImage(bytes);
    var w = bitmapSource.Width;
    var h = bitmapSource.Height;
    var stride = bitmapSource.Format.BitsPerPixel * (int)w / 8; //计算Stride 
    byte[] byteList = new byte[(int)h * stride];
    bitmapSource.CopyPixels(byteList, stride, 0);  
    Affdex.Frame frame = new Affdex.Frame((int)w, (int)h, byteList, Affdex.Frame.COLOR_FORMAT.BGRA); 
    Detector.process(frame);
}

如上述代码所示,我们在启动了Detector后,读取了一个人物图片,然后把人物图片的像素数组解析出来,生成一个Frame;这个Frame是Affdex的类,用于保存图像数据信息。

最后,我们把生成的Frame对象,扔给Detecotor的Process方法处理。

Detecotor处理完成后,会触发onImageResults方法。

在onImageResults方法里,入参faces包含了处理结果。

现在我们使用faces里的内容,来定位图片中人物面部的位置。

public void onImageResults(Dictionary<int, Face> faces, Affdex.Frame frame)
{
    Face face = null;
    if (faces != null && faces.Values != null && faces.Values.Count() > 0)
    {
        face = faces.Values.First();//因为我们的Detector只识别了一个脸,所以这里最多只有一个数据
    }
    int top = (int)face.FeaturePoints.Min(r => r.X);
    int left = (int)face.FeaturePoints.Min(r => r.Y);
    int bottom = (int)face.FeaturePoints.Max(r => r.X);
    int right = (int)face.FeaturePoints.Max(r => r.Y);
    ImageHelper.cutPicture(System.IO.Path.Combine(System.AppDomain.CurrentDomain.BaseDirectory, "timg.jpg"),
     left, top, right , bottom - top);
}

如上述代码所示,我们在onImageResults里做了【最简单】人物面部坐标定位,并进行了剪切。

处理结果如下图所示:

4.png


结语

事实上,上面介绍的只是Affdex最基础调用,而且,这里并没有使用到深度学习的内容,只是简单的扫描和分析。

想要使用深度学习的内容还需要进一步学习该开源控件,不过,万事开头难,我们现在已经迈出了第一步。

----------------------------------------------------------------------------------------------------

到此C#开发学习人工智能的第一步就完成了。

代码已经传到Github上了,欢迎大家下载。

Github地址:https://github.com/kiba518/WpfAffdex

本文作者:kiba518,全栈.Net软件工程师

声明:本文为 脚本之家专栏作者 投稿,未经允许请勿转载。

相关文章
|
2月前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
170 9
|
2月前
|
Java 物联网 C#
C#/.NET/.NET Core学习路线集合,学习不迷路!
C#/.NET/.NET Core学习路线集合,学习不迷路!
|
9天前
|
缓存 算法 安全
精选10款C#/.NET开发必备类库(含使用教程),工作效率提升利器!
精选10款C#/.NET开发必备类库(含使用教程),工作效率提升利器!
44 12
|
2月前
|
前端开发 JavaScript 安全
C#一分钟浅谈:Blazor WebAssembly 开发
Blazor WebAssembly 是一个客户端框架,允许开发者使用C#和Razor语法构建Web应用。本文介绍了Blazor WebAssembly的基本概念、常见问题及解决方案,包括路由配置、数据绑定、异步操作、状态管理和性能优化等方面的内容,并分享了一些易错点及如何避免的方法。希望这些内容能帮助你在Blazor WebAssembly开发中少走弯路,提高开发效率。
118 51
|
2月前
|
人工智能 自然语言处理 前端开发
VideoChat:高效学习新神器!一键解读音视频内容,结合 AI 生成总结内容、思维导图和智能问答
VideoChat 是一款智能音视频内容解读助手,支持批量上传音视频文件并自动转录为文字。通过 AI 技术,它能快速生成内容总结、详细解读和思维导图,并提供智能对话功能,帮助用户更高效地理解和分析音视频内容。
130 6
VideoChat:高效学习新神器!一键解读音视频内容,结合 AI 生成总结内容、思维导图和智能问答
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
AI驱动的个性化学习路径优化
在当前教育领域,个性化学习正逐渐成为一种趋势。本文探讨了如何利用人工智能技术来优化个性化学习路径,提高学习效率和质量。通过分析学生的学习行为、偏好和表现,AI可以动态调整学习内容和难度,实现真正的因材施教。文章还讨论了实施这种技术所面临的挑战和潜在的解决方案。
94 7
|
2月前
|
开发框架 缓存 .NET
C# 一分钟浅谈:Blazor Server 端开发
Blazor Server 是基于 ASP.NET Core 的框架,允许使用 C# 和 Razor 语法构建交互式 Web 应用。本文介绍 Blazor Server 的基本概念、快速入门、常见问题及解决方案,帮助开发者快速上手。涵盖创建应用、基本组件、数据绑定、状态管理、跨组件通信、错误处理和性能优化等内容。
59 1
|
2月前
|
缓存 C# 开发者
C# 一分钟浅谈:Blazor Server 端开发
本文介绍了 Blazor Server,一种基于 .NET 的 Web 开发模型,允许使用 C# 和 Razor 语法构建交互式 Web 应用。文章从基础概念、创建应用、常见问题及解决方案、易错点及避免方法等方面详细讲解,帮助开发者快速上手并提高开发效率。
68 2
|
2月前
|
人工智能 自然语言处理 搜索推荐
AI辅助教育:个性化学习的新纪元
【10月更文挑战第31天】随着人工智能(AI)技术的发展,教育领域迎来了一场前所未有的变革。AI辅助教育通过智能推荐、语音助手、评估系统和虚拟助教等应用,实现了个性化学习,提升了教学效率。本文探讨了AI如何重塑教育模式,以及个性化学习在新时代教育中的重要性。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI驱动的个性化学习平台构建###
【10月更文挑战第29天】 本文将深入探讨如何利用人工智能技术,特别是机器学习与大数据分析,构建一个能够提供高度个性化学习体验的在线平台。我们将分析当前在线教育的挑战,提出通过智能算法实现内容定制、学习路径优化及实时反馈机制的技术方案,以期为不同背景和需求的学习者创造更加高效、互动的学习环境。 ###
82 3