CVPR oral解读:医疗AI最新进展,可媲美人类医师推理能力的图像检测算法

本文涉及的产品
图像搜索,7款服务类型 1个月
简介: 疫情让大众更加关注医疗健康。而在刚刚过去的CVPR2020中,也有很多医学方面的研究工作。深睿医疗就有四篇论文入选,其中三篇为oral,其论文涵盖了医疗图像识别,姿态估计等多个主题,在医疗AI方面取得了优异的成绩。

微信图片_20220109113924.jpg


CVPR竞争一年比一年更激烈。


从公布的论文接收结果来看,在5865篇有效投稿中有1467篇论文被接收,接收率仅为25%,oral按照往年经验,一般只有5-7%,竞争越发激烈。 


由于疫情,医疗行业的计算机视觉今年也备受关注,无论是oral,poster,还是tutorial,workshop,都有不少医疗健康领域的科研成果。 


其中,深睿医疗就有四篇科技论文入选,三篇选为oral,确实获得了一个相当不错的成绩。 


基于二部图的图像检测算法,拥有了媲美人类医师的推理能力


乳腺癌已成为当前社会的重大公共卫生问题之一,因此乳房X光照片质量检测具有重要的临床意义。


来自轴斜位视图(即中外侧斜肌和颅尾骨)的信息和乳腺疾病是高度相关的,有助于医生做出全面的决策。 


放射科医师能够在横断面图像识别出肿块,但是大多数现有的图像识别方法缺乏领域知识的指导,推理能力很差,因此会限制其性能。 


下面这篇论文介绍了一种先进的二部图卷积网络,使算法具备了类似放射线医师的轴斜位视图推理能力。    


 微信图片_20220109113926.png


我们来看一下二部图网络是如何实现推理能力增强的。  


 微信图片_20220109113929.png      


二部图将跨视图主干特征作为输入,并输出增强的特征以进行进一步的预测。首先,通过用伪标记映射空间视觉特征来构造二部图节点。每个映射单元是每个图形节点的代表区域。


然后,二分图边缘学习对几何约束和语义相似性进行建模。


接下来,通过在二部图中传播信息来进行对应推理以增强特征。最后,增强的特征将与原始信息聚合在一起,进行进一步的预测。 在DDSM数据集上的实验结果表明,该算法达到了最先进的性能。


此外,视觉分析表明该模型具有明确的物理意义,有助于放射科医生进行临床解释。 


同现有的方法相比,同等假阳性下检出敏感性高出4个百分点,同等敏感性下假阳性减少了近60%,充分验证了算法的有效性。


这篇文章也被选为2020年CVPR的ORAL,该算法也已经应用到深睿医疗的乳腺钼靶AI医学辅助诊断系统,用于乳腺疾病的早期筛查。 

病例文本数据及影像数据的关联挖掘全搞定:基于自然语言处理的图像识别


图像识别依旧是今年CVPR的大热方向,接受论文比例是各个主题中最高的。


《Graph-Structured Referring Expression Reasoning in The Wild》(图形结构的引用表达式推理)是由深睿研究员和香港大学计算机科学系联合发表的,主要讨论了一种基于自然语言处理的图像识别方法      


微信图片_20220109113930.png      


这种方法利用自然语言描述来定位图像上的目标物体。作者提出了场景图引导的模块网络(SGMN),该网络在表达式的语言结构的指导下,通过神经模块网络对图像语义图和语言场景图进行推理。 


此外,作者还提出了Ref-Reasoning——用于结构化指称表达式推理的大规模真实数据集。该数据集包含真实图像和具有不同推理布局的语义丰富的表达式。 


参考集包含83,989张图像中的791,956个参考表达。它具有721,164、36,183和34,609个表达参考对,分别用于训练,验证和测试。


RefReasoning包含许多语义丰富的表达式,这些表达式描述了不同的对象,属性,直接关系和间接关系。 


实验结果表明,SGMN在新的Ref-Reasoning数据集上明显优于现有的最新算法,并在常用的基准数据集上超过了最新的结构化方法。 这项技术在医疗场景下发挥了巨大的作用,可以用于病例文本数据及影像数据的关联挖掘。 


Deep Snake:实时实例分割算法识别物体轮廓


深睿研究院的另一篇论文:《Deep Snake for Real-Time Instance Segmentation》(Deep Snake实时实例分割算法)是与浙江大学计算机学院合作发表的。


Deep Snake用深度学习的方式实现了传统的主动轮廓模型思想,使用神经网络将初始轮廓迭代变形为物体轮廓。   


    微信图片_20220109113932.png      


实例分割是许多计算机视觉项目的基石,许多视频分析,自动驾驶和机器人抓取项目都是基于实例分割。一般的实例分割都是基于像素,本文中的实例分割则是基于轮廓,相较于像素而言参数较少。


Deep Snake的本质就是轮廓模型。为了充分利用轮廓拓扑,论文提出了圆形卷积以有效地学习轮廓模型。 


基于Deep Snake,论文开发了一个两阶段的实例分割:初始轮廓方案和轮廓变形。在数据集的测试中,与直接回归对象边界点的坐标相比,这种方法性能更好。


论文将这个方法放到Cityscapes,Kins,Sbd和COCO数据集上进行测试,取得了很好的效果,并达到了32fps的速度。 


MetaFuse:不依赖特定相机对的人体姿态估计


人体姿态估计已经取得了非常大的进展,但是之前的研究在实际中会遇到一个问题,就是人体被遮挡,之前的很多方案依赖于特定的相机对,缺乏泛化能力。


深睿研究院与北京大学前沿交叉学科研究院大数据中心合作提出了融合多个视角信息的姿态估计方法。  


  微信图片_20220109113934.png


MetaFuse将原有的融合模型分解为:所有相机通用的模型、针对特定相机的轻量级变换矩阵。然后使用元学习增强了模型的泛化能力,只需要少量样本即可完成模型迁移。    


 微信图片_20220109113936.png


通过不同方法估计的人体姿态。每组有4个子图,分别对应于真实情况和三种方法。粉色和青色的关节分别属于右侧和左侧的身体部位。红色箭头突出显示了这三种方法估计的关节位置。从实验结果来看,MetaFuse的各项性能指标明显优于其他方法。 今年的CVPR还有很多值得关注的内容,感兴趣的同学可以去官网查看相关的细节。


参考链接:https://arxiv.org/pdf/2003.13239.pdf
http://cvpr2020.thecvf.com/

相关文章
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
2月前
|
JSON 人工智能 数据格式
AI计算机视觉笔记二十六:YOLOV8自训练关键点检测
本文档详细记录了使用YOLOv8训练关键点检测模型的过程。首先通过清华源安装YOLOv8,并验证安装。接着通过示例权重文件与测试图片`bus.jpg`演示预测流程。为准备训练数据,文档介绍了如何使用`labelme`标注工具进行关键点标注,并提供了一个Python脚本`labelme2yolo.py`将标注结果从JSON格式转换为YOLO所需的TXT格式。随后,通过Jupyter Notebook可视化标注结果确保准确性。最后,文档展示了如何组织数据集目录结构,并提供了训练与测试代码示例,包括配置文件`smoke.yaml`及训练脚本`train.py`,帮助读者完成自定义模型的训练与评估。
|
2月前
|
机器学习/深度学习 人工智能 UED
OpenAI o1模型:AI通用复杂推理的新篇章
OpenAI发布了其最新的AI模型——o1,这款模型以其独特的复杂推理能力和全新的训练方式,引起了业界的广泛关注。今天,我们就来深入剖析o1模型的特点、背后的原理,以及一些有趣的八卦信息。
312 73
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
15天前
|
人工智能 运维 Serverless
Serverless GPU:助力 AI 推理加速
近年来,AI 技术发展迅猛,企业纷纷寻求将 AI 能力转化为商业价值,然而,在部署 AI 模型推理服务时,却遭遇成本高昂、弹性不足及运维复杂等挑战。本文将探讨云原生 Serverless GPU 如何从根本上解决这些问题,以实现 AI 技术的高效落地。
|
1月前
|
机器学习/深度学习 人工智能 JSON
微信小程序原生AI运动(动作)检测识别解决方案
近年来,疫情限制了人们的出行,却推动了“AI运动”概念的兴起。AI运动已在运动锻炼、体育教学、线上主题活动等多个场景中广泛应用,受到互联网用户的欢迎。通过AI技术,用户可以在家中进行有效锻炼,学校也能远程监督学生的体育活动,同时,云上健身活动形式多样,适合单位组织。该方案成本低、易于集成和扩展,已成功应用于微信小程序。
|
9天前
|
机器学习/深度学习 人工智能 弹性计算
阿里云AI服务器价格表_GPU服务器租赁费用_AI人工智能高性能计算推理
阿里云AI服务器提供多种配置选项,包括CPU+GPU、CPU+FPGA等组合,支持高性能计算需求。本文汇总了阿里云GPU服务器的价格信息,涵盖NVIDIA A10、V100、T4、P4、P100等多款GPU卡,适用于人工智能、机器学习和深度学习等场景。详细价格表和实例规格见文内图表。
|
1月前
|
机器学习/深度学习 人工智能 算法
【MM2024】面向 StableDiffusion 的多目标图像编辑算法 VICTORIA
阿里云人工智能平台 PAI 团队与华南理工大学合作在国际多媒体顶级会议 ACM MM2024 上发表 VICTORIA 算法,这是一种面向 StableDiffusion 的多目标图像编辑算法。VICTORIA 通过文本依存关系来修正图像编辑过程中的交叉注意力图,从而确保关系对象的一致性,支持用户通过修改描述性提示一次性编辑多个目标。
|
10天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
1月前
|
算法 安全
分别使用OVP-UVP和OFP-UFP算法以及AFD检测算法实现反孤岛检测simulink建模与仿真
本课题通过Simulink建模与仿真,实现OVP-UVP、OFP-UFP算法及AFD检测算法的反孤岛检测。OVP-UVP基于电压幅值变化,OFP-UFP基于频率变化,而AFD则通过注入频率偏移信号来检测孤岛效应,确保电力系统安全稳定运行。系统使用MATLAB 2013b进行建模与仿真验证。