AI预测蛋白质结构登上Science、Nature年度技术突破,AI for Science潜力无穷

简介: AI预测蛋白质结构登上Science、Nature年度技术突破,AI for Science潜力无穷

如果要给 AI 领域的 2021 评个最具突破奖,你会选择谁?《science》和《nature》给出的答案都是「蛋白质结构预测」。

今年 7 月,蛋白结构两大 AI 预测算法相继开源,一个是 DeepMind 的 AphaFold2,另一个是华盛顿大学等机构研发的 RoseTTAFold。现在这两大算法被《science》评为 2021 年度突破。

众所周知,蛋白质中的长链氨基酸扭曲、折叠并交织成复杂的三维结构,这些结构可能很难,甚至根本不可能破译。数十年来科学家们一直希望通过基因序列简单地预测蛋白质的结构形状,以开启一个洞察生命运作机理的新世界,但一直进展缓慢。

直到 DeepMind 宣布,人们首次发现了一种通过计算来预测蛋白质结构的方法。即使在不知道相似结构的情况下,AI 也可以在原子层面上精确预测蛋白质的结构。

image.png

DeepMind  表示 AlphaFold  可以周期性地以原子精度预测蛋白质结构,在技术上利用多序列对齐和深度学习算法设计,并结合关于蛋白质结构的物理和生物学知识提升了预测效果。AlphaFold  的突破性研究成果将帮助科研人员探索引发某些疾病的机制,并为设计药物、农作物增产,以及可降解塑料的「超级酶」研发铺平道路。image.png

近日 Alphafold 的缔造者之一 John Jumper 也被评为《nature》2021 年度十大科学人物。

image.png

从  2018 年初代 AlphaFold 在国际蛋白质结构预测竞赛(CASP)崭露头角,到 2021 年 AlphaFold2 正式开源,John  Jumper 带领 DeepMind 的研究团队克服了重重困难,才让 AlphaFold2 实现了 2/3 蛋白质结构预测的卓越成绩。

同为蛋白质结构预测研究的 RoseTTAFold 也一被《science》评选为 2021 年度突破。

image.png

RoseTTAFold  是由华盛顿大学医学院蛋白质设计研究所(Institute for Protein  Design)联合哈佛大学、德克萨斯大学西南医学中心、剑桥大学、劳伦斯伯克利国家实验室等机构研发的一款基于深度学习的蛋白质预测工具。RoseTTAFold  取得了媲美 AlphaFold2 的超高准确率,而且速度更快、所需要的计算机处理能力也更低。

image.png

从结构上来看,RoseTTAFold   是一个三轨(three-track)神经网络,意味着它可以兼顾蛋白质序列的模式、氨基酸如何相互作用以及蛋白质可能的三维结构。在这种结构中,一维、二维、三维信息来回流动,使得神经网络能够集中推理蛋白质的化学部分及其折叠结构。

正如其为人们所惊叹的那样,十几年前一些科学家认为蛋白质结构预测的问题永远无法解决,但今天这已然成为了现实。人工智能带来的最大突破就是把「不可能」变成了「可能」。

扩展来看,不只是对蛋白质结构预测的变革,AI 对整个科研领域还有大量的潜力等待挖掘,这也是 AI for Science 这一主题在今年备受关注的原因,如 AI + 数学、AI + 化学、AI + 医药。

也许,接下来两年会有更多 AI + 科研的突破,大家可以重点关注下。

参考链接:https://www.science.org/doi/10.1126/science.abn5795https://www.nature.com/immersive/d41586-021-03621-0/index.html#section-7cgEBpkV9L

相关文章
|
9天前
|
机器学习/深度学习 人工智能 编解码
ByteDance Research登Nature子刊:AI+冷冻电镜,揭示蛋白质动态
在生物医学领域,蛋白质的结构与功能研究至关重要。ByteDance Research团队开发的CryoSTAR软件,结合AI与冷冻电镜技术,通过深度学习模型、结构先验和异质性重构算法,成功解析了蛋白质的动态行为,尤其在处理结构异质性方面表现出色。该软件已在多个蛋白质体系中取得显著成果,如TRPV1通道蛋白的动态变化研究,为理解蛋白质功能及疾病机制提供了新思路。论文链接:https://www.nature.com/articles/s41592-024-02486-1
63 26
|
12天前
|
人工智能 自然语言处理 算法
谷歌DeepMind研究再登Nature封面,隐形水印让AI无所遁形
近日,谷歌DeepMind团队在《自然》期刊上发表了一项名为SynthID-Text的研究成果。该方法通过引入隐形水印,为大型语言模型(LLM)生成的文本添加统计签名,从而实现AI生成文本的准确识别和追踪。SynthID-Text采用独特的Tournament采样算法,在保持文本质量的同时嵌入水印,显著提高了水印检测率。实验结果显示,该方法在多个LLM中表现出色,具有广泛的应用潜力。论文地址:https://www.nature.com/articles/s41586-024-08025-4。
49 26
|
12天前
|
机器学习/深度学习 人工智能 搜索推荐
哈佛推出全新类ChatGPT癌症诊断AI,登上Nature!准确率高达96%
哈佛大学研究团队开发的新型AI模型CHIEF,在《自然》期刊发表,癌症诊断准确率达96%。CHIEF基于深度学习,能自动识别、分类癌症并预测生存期,具高准确性、多任务能力和泛化性。它结合病理图像与基因组学等数据,显著提升诊断效率和个性化治疗水平,有望改善医疗资源不平等。但数据隐私和临床效果验证仍是挑战。论文见:https://www.nature.com/articles/s41586-024-07894-z
142 101
|
6天前
|
人工智能 缓存 Ubuntu
AI+树莓派=阿里P8技术专家。模拟面试、学技术真的太香了 | 手把手教学
本课程由阿里P8技术专家分享,介绍如何使用树莓派和阿里云服务构建AI面试助手。通过模拟面试场景,讲解了Java中`==`与`equals`的区别,并演示了从硬件搭建、语音识别、AI Agent配置到代码实现的完整流程。项目利用树莓派作为核心,结合阿里云的实时语音识别、AI Agent和文字转语音服务,实现了一个能够回答面试问题的智能玩偶。课程展示了AI应用的简易构建过程,适合初学者学习和实践。
55 22
|
3天前
|
人工智能 Java 程序员
通义灵码AI编码助手和AI程序员背后的技术
通义灵码AI编码助手和AI程序员背后的技术,由通义实验室科学家黎槟华分享。内容涵盖三部分:1. 编码助手技术,包括构建优秀AI编码助手及代码生成补全;2. 相关的AI程序员技术,探讨AI程序员的优势、发展情况、评估方法及核心难点;3. 代码智能方向的展望,分析AI在软件开发中的角色转变,从辅助编程到成为开发主力,未来将由AI执行细节任务,开发者负责决策和审核,大幅提升开发效率。
47 12
|
5天前
|
人工智能 搜索推荐
AI视频技术的发展是否会影响原创内容的价值
AI视频技术的发展显著降低了视频制作的门槛与成本,自动完成剪辑、特效添加等繁琐工作,大大缩短创作时间。它提供个性化创意建议,帮助创作者突破传统思维,拓展创意边界。此外,AI技术使更多非专业人士也能参与视频创作,注入新活力与多样性,丰富了原创内容。总体而言,AI视频技术不仅提升了创作效率,还促进了视频内容的创新与多样化。
|
2天前
|
机器学习/深度学习 人工智能 编译器
BladeDISC++:Dynamic Shape AI 编译器下的显存优化技术
本文介绍了阿里云 PAI 团队近期发布的 BladeDISC++项目,探讨在动态场景下如何优化深度学习训练任务的显存峰值,主要内容包括以下三个部分:Dynamic Shape 场景下显存优化的背景与挑战;BladeDISC++的创新解决方案;Llama2 模型的实验数据分析
|
2天前
|
存储 人工智能 边缘计算
AI时代下, 边缘云上的技术演进与场景创新
本文介绍了AI时代下边缘云的技术演进与场景创新。主要内容分为三部分:一是边缘云算力形态的多元化演进,强调阿里云边缘节点服务(ENS)在全球600多个节点的部署,提供低时延、本地化和小型化的价值;二是边缘AI推理的创新发展与实践,涵盖低时延、资源广分布、本地化及弹性需求等优势;三是云游戏在边缘承载的技术演进,探讨云游戏对边缘计算的依赖及其技术方案,如多开技术、云存储和网络架构优化,以提升用户体验并降低成本。文章展示了边缘云在未来智能化、实时化解决方案中的重要性。
|
13天前
|
机器学习/深度学习 人工智能
微软华人领衔AI²BMD登Nature,AI生物分子模拟双突破!继AlphaFold后又一里程碑
AI²BMD(AI-driven Biomolecular Dynamics)是由微软华人科学家团队领衔的研究,发表于《自然》杂志。该方法通过将蛋白质分解为21种常见单元,并利用机器学习模型预测其相互作用,实现高效精准的生物分子模拟。相比传统方法,AI²BMD在能量和力预测上精度更高,计算速度提升数个数量级,尤其适用于大规模蛋白质模拟,为药物设计等领域提供了有力工具。未来研究将扩展至更多生物分子类型并优化效率。论文地址:https://www.nature.com/articles/s41586-024-08127-z
42 8
|
12天前
|
存储 人工智能 监控
AI视频监控技术在公租房管理中的应用:提升监管精准度与效率
该AI视频监控系统具备1080P高清与夜视能力,采用深度学习技术实现高精度人脸识别(误识率1%),并支持实时预警功能,响应时间小于5秒。系统支持私有化部署,保障数据隐私安全,适用于大规模公租房社区管理,可容纳10万以上人脸库。基于开源架构和Docker镜像,一键部署简单快捷,确保24小时稳定运行,并提供详细的后台数据分析报表,助力政府决策。

热门文章

最新文章