Python 深度学习,你的 Keras 准备好了吗?

简介: Python 深度学习,你的 Keras 准备好了吗?

前天我在公众号推荐了《Python Deep Learning》这本书。该书是由 Keras 作者写的,所以全书基本围绕着 Keras 讲深度学习的各种实现,从 CNN,RNN 到 GAN 等,偏入门,但理论和实战部分都讲的还不错,承载着很多作者对深度学习整体性的思考。目前该书的中英文版包括源码见下面的链接:


链接:

https://pan.baidu.com/s/1kTTGpzQo-p5ZfeSI6HlbEA 


提取码:mnz9


我花了几天时间快速过了这本书,当然少不了跑跑书上的代码。代码的完整性很高,难易程度作者都分层次介绍得比较清楚。总之,Keras 非常适合大家快速上手深度学习项目。


好了,今天从基础开始,教大家在 win10 系统中,使用 Anaconda + TensorFlow + Keras,快速搭建一个 Keras 的开发环境(CPU 版本),非常容易。


1. 安装 Anaconda


打开 Anaconda 的官方下载地址:


https://www.anaconda.com/download/


就能看到最新的下载版本:


image.png

选择 Python 3.7 version 下载。下载完成后直接运行 Anaconda 的安装文件,按照提示一步一步安装就可以了。


安装完成后,会在 win10 的开始菜单发现 Anaconda 这些组件:


image.png

因为我是较早安装的,所以是 Anaconda3,不必在意。可直接安装最新版本。另外,其中的 Jupyter Notebook(tensorflow) 是我后面安装得到的。你们暂时看不到正常。


2. 创建 tensorflow 的虚拟环境


Python 为不同的项目需求创建不同的虚拟环境非常常见。因为在实际项目开发中,我们通常会根据自己的需求去下载各种相应的框架库,但是可能每个项目使用的框架库并不一样,或使用框架的版本不一样,这样需要我们根据需求不断的更新或卸载相应的库,管理起来相当麻烦。所以通过创建虚拟环境,相当于为不同的项目创建一块独立的空间,在这个空间里,你安装任何库和框架都是独立的,不会影响到外部环境。


为了创建我们 keras 的开发环境,首先打开 Anaconda 组件 Anaconda Prompt,这是一个类似 cmd 的界面,便于我们对 Python 库的安装和管理。界面如下:


image.png

然后,创建虚拟环境并安装 Python。在 Anaconda Prompt 界面中输入:


conda create --name tensorflow python=3.5.2


这里,虚拟变量的名称我们取 tensorflow,当然你可以换个名字。Python 版本这里选择 3.5。


最后,激活并进入到虚拟环境 tensorflow 中:


activate tensorflow

进入后,提示符前会显示 (tensorflow):


image.png


3. 安装 TensorFlow


可能有的同学会问我们不是安装 Keras 吗?怎么安装起 TensorFlow 了?这里解释一下。Keras 是一个模型级(model-level)的库,为开发深度学习模型提供了高层次的构建模块。 它不处理张量操作、求微分等低层次的运算。相反,它依赖于一个专门的、高度优化的张量库来完成这些运算,这个张量库就是 Keras 的后端引擎(backend engine),例如 TensorFlow、Theano、CNTK等都可以无缝嵌入到 Keras 中。如下图所示:


image.png

所以先要安装 Keras 的后端引擎 TensorFlow,首先需要升级一下你的 pip。同样是在 Anaconda Prompt 中输入以下命令:


python -m pip install -U pip

然后直接使用 pip 安装即可:


pip install tensorflow

如果没有报错,表示安装没有问题。进一步验证安装是否成功,输入 Python,在 Python 命令行中输入:import tensorflow as tf。若没有任何提示,则表明 TensorFlow 安装成功,如下图所示:


image.png

4. 安装 Keras


同样,打开 Anaconda Prompt,进入 tensorflow 虚拟环境,使用 pip 安装 Keras:


pip install keras

如果没有报错,表示安装没有问题。

5. 安装 MinGW


最后你还可以安装 MinGW,同样是在虚拟环境 tensorflow 中,输入以下命令:


conda install mingw libpython

进一步验证整个 Keras 安装是否成功,输入 Python,在 Python 命令行中输入:import keras。若出现下面提示,则表明 Keras安装成功:


image.png


6. 启动 Keras


整个 Keras 安装成功了。那么实际应用中我们如何启动 Keras 呢?因为我习惯了使用 Anaconda 自带的 Jupyter Nootbook,那么接下来我就教大家使用 Jupyter Notebook 调用 Keras 实例。


因为现在 Anaconda 自带的 Jupyter Notebook 还是整个外部 Python 环境下的,我们之前创建的虚拟环境 tensorflow 并没有 Jupyter Notebook。怎们办?安装一个就好了。


同样在 Anaconda Prompt 中,激活 tensorflow 环境,使用 conda 命令安装,如下所示:


conda install jupyter

非常简单,安装成功之后,就可以在 Anaconda 的工具项里看到 Jupyter Notebook(tensorflow) 了。


image.png

这样,点击 Jupyter Notebook(tensorflow),就可以直接打开 Jupyter Notebook,可以直接在 cell 中导入 Keras 了。


image.png

这样就不用每次使用 activate 激活 tensorflow 虚拟环境了。


好了,现在 Keras CPU 版本已经安装成功,可以开始你的深度学习 Keras 实战之旅了。


7. Keras 实例


下面,使用 Keras 运行这本书上的一个简单例子,用来对 IMDB 的正负电影评论进行分类。


import keras
from keras import models
from keras import layers
from keras.datasets import imdb
import numpy as np
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)
def vectorize_sequences(sequences, dimension=10000):
   # Create an all-zero matrix of shape (len(sequences), dimension)
   results = np.zeros((len(sequences), dimension))
   for i, sequence in enumerate(sequences):
       results[i, sequence] = 1.  # set specific indices of results[i] to 1s
   return results
# Our vectorized training data
x_train = vectorize_sequences(train_data)
# Our vectorized test data
x_test = vectorize_sequences(test_data)
# Our vectorized labels
y_train = np.asarray(train_labels).astype('float32')
y_test = np.asarray(test_labels).astype('float32')
model = models.Sequential()
model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
model.compile(optimizer='rmsprop',
            loss='binary_crossentropy',
            metrics=['acc'])
model.fit(x_train, y_train, epochs=4, batch_size=512)
result = model.evaluate(x_test, y_test)
print(result)

最后结果,测试集的分类准确率达到了 88.3%。


8. 结语


本文介绍的 Keras 的 CPU 版本的安装,本书的作者推荐大家尽可能使用 GPU 版本,提高运算速度。我跑完本书的代码发现,CPU 版本下某些模型的训练时间还是比较长的。例如使用 VGG 预训练模型,对 Kaggle 猫狗分类问题进行训练,并微调 VGG 顶层参数,整个训练时间达到了 5 个小时左右。


如果安装 GPU 版本,需要额外安装 CUDA Toolkit + cuDNN。需要特别注意的是 CUDA+cuDNN 的版本。因为每个人的 GPU 显卡型号和安装版本不尽相同,所以本文不再赘述,需要的话,我们下次再专门介绍以下 GPU 版本的安装。


没有 GPU,本书的代码基本也能跑得通,就是大型模型的训练速度比较慢。


如果有小伙伴对 GPU 版本的 Keras 安装有好的方法,欢迎留言!

相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
相关文章
|
4月前
|
存储 JavaScript Java
(Python基础)新时代语言!一起学习Python吧!(四):dict字典和set类型;切片类型、列表生成式;map和reduce迭代器;filter过滤函数、sorted排序函数;lambda函数
dict字典 Python内置了字典:dict的支持,dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度。 我们可以通过声明JS对象一样的方式声明dict
324 1
|
4月前
|
存储 Java 数据处理
(numpy)Python做数据处理必备框架!(一):认识numpy;从概念层面开始学习ndarray数组:形状、数组转置、数值范围、矩阵...
Numpy是什么? numpy是Python中科学计算的基础包。 它是一个Python库,提供多维数组对象、各种派生对象(例如掩码数组和矩阵)以及用于对数组进行快速操作的各种方法,包括数学、逻辑、形状操作、排序、选择、I/0 、离散傅里叶变换、基本线性代数、基本统计运算、随机模拟等等。 Numpy能做什么? numpy的部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组 用于对整组数据进行快速运算的标准数学函数(无需编写循环)。 用于读写磁盘数据的工具以及用于操作内存映射文件的工具。 线性代数、随机数生成以及傅里叶变换功能。 用于集成由C、C++
458 1
|
4月前
|
算法 Java Docker
(Python基础)新时代语言!一起学习Python吧!(三):IF条件判断和match匹配;Python中的循环:for...in、while循环;循环操作关键字;Python函数使用方法
IF 条件判断 使用if语句,对条件进行判断 true则执行代码块缩进语句 false则不执行代码块缩进语句,如果有else 或 elif 则进入相应的规则中执行
530 1
|
9月前
|
安全 数据安全/隐私保护 Python
Python学习的自我理解和想法(27)
本文记录了学习Python第27天的内容,主要介绍了使用Python操作PPTX和PDF的技巧。其中包括通过`python-pptx`库创建PPTX文件的详细步骤,如创建幻灯片对象、选择母版布局、编辑标题与副标题、添加文本框和图片,以及保存文件。此外,还讲解了如何利用`PyPDF2`库为PDF文件加密,涵盖安装库、定义函数、读取文件、设置密码及保存加密文件的过程。文章总结了Python在处理文档时的强大功能,并表达了对读者应用这些技能的期待。
|
4月前
|
存储 Java 索引
(Python基础)新时代语言!一起学习Python吧!(二):字符编码由来;Python字符串、字符串格式化;list集合和tuple元组区别
字符编码 我们要清楚,计算机最开始的表达都是由二进制而来 我们要想通过二进制来表示我们熟知的字符看看以下的变化 例如: 1 的二进制编码为 0000 0001 我们通过A这个字符,让其在计算机内部存储(现如今,A 字符在地址通常表示为65) 现在拿A举例: 在计算机内部 A字符,它本身表示为 65这个数,在计算机底层会转为二进制码 也意味着A字符在底层表示为 1000001 通过这样的字符表示进行转换,逐步发展为拥有127个字符的编码存储到计算机中,这个编码表也被称为ASCII编码。 但随时代变迁,ASCII编码逐渐暴露短板,全球有上百种语言,光是ASCII编码并不能够满足需求
228 4
|
5月前
|
JavaScript Java 大数据
基于python的网络课程在线学习交流系统
本研究聚焦网络课程在线学习交流系统,从社会、技术、教育三方面探讨其发展背景与意义。系统借助Java、Spring Boot、MySQL、Vue等技术实现,融合云计算、大数据与人工智能,推动教育公平与教学模式创新,具有重要理论价值与实践意义。
|
7月前
|
算法 IDE 测试技术
python学习需要注意的事项
python学习需要注意的事项
376 57
|
7月前
|
JSON 数据安全/隐私保护 数据格式
拼多多批量下单软件,拼多多无限账号下单软件,python框架仅供学习参考
完整的拼多多自动化下单框架,包含登录、搜索商品、获取商品列表、下单等功能。

推荐镜像

更多