深度学习:Tensorflow的基本概念和张量

简介: 深度学习:Tensorflow的基本概念和张量
计算密集型(cpu计算)
    -tensorflow
IO密集型(web,磁盘)
    -django
    -scrapy

1、基本概念

tensor 张量-数据结构

op 专门运算的操作节点

graph 图:整个程序的结构

session 会话:运算程序的图

图默认已经注册:

一组表示tf.Operation计算单位的对象

和 tf.Tensor表示操作之间流动的数据单位的对象

获取图

graph = tf.get_defaul_graph()

默认图,相当于给程序分配内存

创建图

g = tf.Graph()
with g.as_default():
    pass

op: 只要使用tensorflow的API定义函数都是OP

tensor: 指代的就是数据

tensorflow

-前端系统:定义程序的图的机构

-后端系统:运算图结构

会话:

-运行图的机构

-分配资源计算

-掌握资源(变量的资源,队列,线程)

使用 1

session = tf.Session()
session.run()
session.close()

使用 2 上下文管理器

with tf.Session() as session:
    session.run()

Session参数:

1、可以指定图 graph参数

2、显示运行设备

config = tf.ConfigProto(log_device_placement=True)

命令行交互

>> import tensorflow as tf
>> tf.InteractiveSession()

只要有会话开启,就可以使用

varible.eval()
session.run()

参数:

fetches 变量,列表,元组

namedtuple,dict,OrderDict

重载的运算符,默认会给运算符重载为op了O型

注意:不是op不能运算

feed_dict 训练数据,实时提供数据去进行训练

placeholder 占位符

# None为不固定长度
plt = tf.placeholder(tf.float32, shape=[None, 3])
data = [[1, 2, 3], [4, 5, 6]]
with tf.Session() as session:
    session.run(plt, fead_dict={plt: data})

张量

numpy as np
数组 ndarray  矩阵      张量 tensor = ndarray
0维           2维       
1维
2维

2、基本数据格式

一个类型化的N维度数组(tf.Tensor)

Tensor(名称, 维度形状, 数据类型)

常用数据类型

tf.float32

tf.int32


相关文章
|
3天前
|
数据采集 人工智能 安全
|
12天前
|
云安全 监控 安全
|
4天前
|
自然语言处理 API
万相 Wan2.6 全新升级发布!人人都能当导演的时代来了
通义万相2.6全新升级,支持文生图、图生视频、文生视频,打造电影级创作体验。智能分镜、角色扮演、音画同步,让创意一键成片,大众也能轻松制作高质量短视频。
1071 151
|
17天前
|
机器学习/深度学习 人工智能 自然语言处理
Z-Image:冲击体验上限的下一代图像生成模型
通义实验室推出全新文生图模型Z-Image,以6B参数实现“快、稳、轻、准”突破。Turbo版本仅需8步亚秒级生成,支持16GB显存设备,中英双语理解与文字渲染尤为出色,真实感和美学表现媲美国际顶尖模型,被誉为“最值得关注的开源生图模型之一”。
1745 9
|
9天前
|
人工智能 自然语言处理 API
一句话生成拓扑图!AI+Draw.io 封神开源组合,工具让你的效率爆炸
一句话生成拓扑图!next-ai-draw-io 结合 AI 与 Draw.io,通过自然语言秒出架构图,支持私有部署、免费大模型接口,彻底解放生产力,绘图效率直接爆炸。
688 152
|
11天前
|
人工智能 安全 前端开发
AgentScope Java v1.0 发布,让 Java 开发者轻松构建企业级 Agentic 应用
AgentScope 重磅发布 Java 版本,拥抱企业开发主流技术栈。
656 12
|
6天前
|
SQL 自然语言处理 调度
Agent Skills 的一次工程实践
**本文采用 Agent Skills 实现整体智能体**,开发框架采用 AgentScope,模型使用 **qwen3-max**。Agent Skills 是 Anthropic 新推出的一种有别于mcp server的一种开发方式,用于为 AI **引入可共享的专业技能**。经验封装到**可发现、可复用的能力单元**中,每个技能以文件夹形式存在,包含特定任务的指导性说明(SKILL.md 文件)、脚本代码和资源等 。大模型可以根据需要动态加载这些技能,从而扩展自身的功能。目前不少国内外的一些框架也开始支持此种的开发方式,详细介绍如下。
419 4