AI+实时监控技术提升公共服务的十种方式

简介: 利用实时监控方案成功实现网络与物理安全性合并,将帮助公共事业部门更好地为客户服务、实现更加一致的运营稳定性,同时避免各类计划外停机事件。

云栖号资讯:【点击查看更多行业资讯
在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来!

liS7k9ajzfkfU_600

石油与天然气价格的波动、更高的运营费用、愈发严重的网络/物理威胁,迫使公共事业部门不得不在安全策略方面大踏步迈进。另外,COVID-19疫情也给公共事业部门带来巨大挑战,在导致行业前景的不确定性之外,还迫使从业者们思考该如何快速变化。就当下来看,几十年前设计的现场与远程位置安全制度,已经无法应对层出不穷的网络与物理安全威胁。

快速行动,将网络与无力完全合并起来

凭借着已有数十年历史的工业控制系统(ICS),目前世界各地的公共事业部门仍然不可能充分保护多达数百万个前所未有的威胁。包括化工、电力、食品与饮料、天然气、医疗保健、石油、运输、供水等在内的各类关键基础设施行业,目前只能依赖于ICS应用加数字隔离式物理安全机制以保护运营环境。从传统角度来看,ICS的设计思路主要强调可靠性与正常运行时间,而极少涉及对远程位置进行实时监控。

可以肯定的是,现在我们必须消除网络与物理安全之间的鸿沟。ICS不足以保护每个新的威胁面,也未能全面集成至现场与远程位置的实时监控体系当中。根据《2017年Dragos工业控制漏洞》报告,在所有与ICS相关的漏洞中,有63%可能导致现场失去操作控制能力,71%的漏洞可立即扰乱或阻断操作视图。为此,各类新兴公共事业公司开始将AI驱动型网络安全与物理安全整合到统一的平台当中,希望以创新手段攻克这一不断演进的历史性难题。

公共事业部门需要意识到,他们运营体系中的每一台机器与设备,都代表着安全范围的新边界。而对各端点及威胁面的实时监控,则将带来宝贵的数据,可用于保障现有网络/物理安全系统的运行、调整乃至重建。下图来自德勤公司发布的《2030年电力市场研究:能源行业新前景》报告,其中解释了公共事业公司应如何更新运营平台与相关安全方法,保证其运行表现与客户的期望保持同步。

lieji1frXYpJg_600

公共事业部门在迁移至新的现场与设施位置的同时,需要将网络与物理安全机制整合起来——德勤公司《2030年电力市场研究:能源行业新前景》报告

AI与实时监控技术保护公共设施的十种方式

利用实时监控方案成功实现网络与物理安全性合并,将帮助公共事业部门更好地为客户服务、实现更加一致的运营稳定性,同时避免各类计划外停机事件。对各个端点及威胁面的有力保护,既能确保短期内的运营稳定性,又可立足长期赢得客户信任。在实现这两项目标的过程中,实时监控技术有望发挥巨大作用。

下面来看实时监控技术保护公共设施的十种方式:

  • 对指向设施、机器或资产的每一次访问请求进行实时监控,预防入侵、破坏与盗窃行为。通过在整体网络之上建立实时监控机制,公共事业部门能够在1秒之内了解到当前系统是否存在安全漏洞、故意破坏或者潜在的盗窃行为。如果有形资产遭遇违规,管理员将实时收到警报、锁定威胁面、在几秒钟内阻断攻击路径,最终阻止公共事业远程设施可能受到的损害或网络攻击。
  • 公共事业部门将第一次能够随时保证任意设施位置/设备的最低访问权限。实时监控与访问控制方案相结合,将为IT及信息安全团队带来强大的灵活性优势,帮助他们第一次在各个层级为用户授权特定的访问权限。
  • 了解哪些设施、现场、机械及远程设备能够正常运行,哪些需要根据状况进行养护、更新与维修。通过配置,我们可以利用实时监控从机器及远程设备端收集状态数据,并将这些目标作为威胁面加以保护。麦肯锡最近发布的《利用人工智能实现智能化——对德国及其工业领域的预期影响》研究报告指出,实时了解远程机械及设备运行状况,每年可为IT及设施运营团队节约数千小时的工作时长。参见下图:

lirKaL5nzInfg_600

麦肯锡最近发布的《利用人工智能实现智能化——对德国及其工业领域的预期影响》研究报告

  • 实时监控与AI(特别是无监督机器学习算法)相结合,能够“学习”远程机器与设备的访问行为,据此判断发生盗窃或破坏事件的可能性。将实时数据/分析与机器学习模型结合起来,可以帮助我们预测哪些机器或设备类型最有可能遭到盗窃或破坏。利用这些预测性洞见,公共事业部门则可以启动更强大的威慑性策略以保护自有财产。而将AI、实时监控与来自物理监控的连续数据加以整理,也能够减少误报几率、帮助监控团队提高工作效率。
  • 将远程位置视频与实时监控相结合,可建立起关于远程位置的360度网络与物理安全视图。公共事业安全机制的未来必然在于数字化,而其核心驱动力,正是实时监控以及为各个远程位置建立起精准实时视图的能力。
  • 一切公共事业部门的安全系统与策略都应作为整体设备、位置与网络安全体系的组成部分——而不仅是附加产物。只有这样,才能让实时监控成为可能。对公共事业网络中各个端点及威胁面进行保护,第一步应该从管理各处设施、位置及系统开始。在合并工作完成后,要进一步实现网络与物理安全保障,我们需要立足各个位置扩展独立的安全策略。
  • AI与机器学习将把多项安全技术集成至同一共通目标当中,借此开启位置智能与态势感知的新纪元。公共事业部门需要尽快着手研究如何在全部下辖部门及团队当中扩展物理与网络安全体系。机器学习技术可以通过风险评分提供可量化的信任度,此评分将根据每一位用户面向各系统或物理位置执行的实际访问操作而实时创建并更新。利用风险评分,我们可以量化信任度背景并准确定义当前可用的资源数量。
  • 以机器学习为基础,不断通过用户的行为模式、上下文与设备学习各位置与系统中的访问态势,借此消除凭证滥用攻击。努力跟踪用户的行为模式,及其获取安全系统访问权限时的具体上下文及设备使用方式,从而提高安全性并改善客户体验。先进的机器学习算法还能够定义特定用户需要访问哪些系统与物理位置、一般访问多长时间等量化指标。
  • 使用机器学习技术实时生成风险评分与安全分析结论,并据此调整公共事业安全网络。实时监控还有助于优化各安全网络,并跨越整体公共事业网络做出响应。利用实时传入数据,我们可以准确筛查故障排查结果,减少远程位置中经常出现的误报信息。
  • 将实时监控数据与机器学习相结合,能够加快新员工风险评分速度、明确定义访问权限以简化新员工的入职培训流程。以风险评分为基础,AI方案将随时间推移而不断改进,帮助新入职的员工加快工作速度并获取必要访问权限,借此提高工作效率。在利用连续实时数据流创建并训练预测模型时,我们将得出更准确的风险评分,并配合实时监控机制以覆盖各类设施、机械与设备。这一切不仅将加快新员工的上手速度,同时也可严格限制非必要人员与特定系统间的接触。

【云栖号在线课堂】每天都有产品技术专家分享!
课程地址:https://yqh.aliyun.com/zhibo

立即加入社群,与专家面对面,及时了解课程最新动态!
【云栖号在线课堂 社群】https://c.tb.cn/F3.Z8gvnK

原文发布时间:2020-06-17
本文来自:“科技行者”,了解相关信息可以关注“科技行者

相关文章
|
4天前
|
人工智能 运维 监控
|
4天前
|
人工智能 运维 数据可视化
AI驱动操作系统服务评测报告
阿里云操作系统服务套件集成AI技术,提供集群健康、系统诊断、观测分析和OS Copilot等功能,助力高效管理。安装组件流程简便,系统观测与诊断功能强大,数据可视化效果佳,支持历史趋势分析。OS Copilot智能助手回答逻辑清晰,但部分问题需增强专业性。整体评价高,建议进一步优化错误提示、自动诊断及订阅服务记录,提升用户体验。
47 25
AI驱动操作系统服务评测报告
|
6天前
|
人工智能 缓存 Ubuntu
AI+树莓派=阿里P8技术专家。模拟面试、学技术真的太香了 | 手把手教学
本课程由阿里P8技术专家分享,介绍如何使用树莓派和阿里云服务构建AI面试助手。通过模拟面试场景,讲解了Java中`==`与`equals`的区别,并演示了从硬件搭建、语音识别、AI Agent配置到代码实现的完整流程。项目利用树莓派作为核心,结合阿里云的实时语音识别、AI Agent和文字转语音服务,实现了一个能够回答面试问题的智能玩偶。课程展示了AI应用的简易构建过程,适合初学者学习和实践。
54 22
|
12天前
|
人工智能 自然语言处理 监控
从数据洞察到动态优化:SaaS+AI引领智能化服务新时代
SaaS(软件即服务)结合AI(人工智能),正引领企业解决方案向智能化转型。SaaS+AI大幅提升了工作效率与决策质量。它能自动完成重复任务、简化设置流程、主动识别并解决潜在问题,还能根据用户需求提供个性化推荐和动态优化配置。
58 1
从数据洞察到动态优化:SaaS+AI引领智能化服务新时代
|
3天前
|
人工智能 Java 程序员
通义灵码AI编码助手和AI程序员背后的技术
通义灵码AI编码助手和AI程序员背后的技术,由通义实验室科学家黎槟华分享。内容涵盖三部分:1. 编码助手技术,包括构建优秀AI编码助手及代码生成补全;2. 相关的AI程序员技术,探讨AI程序员的优势、发展情况、评估方法及核心难点;3. 代码智能方向的展望,分析AI在软件开发中的角色转变,从辅助编程到成为开发主力,未来将由AI执行细节任务,开发者负责决策和审核,大幅提升开发效率。
47 12
|
5天前
|
人工智能 搜索推荐
AI视频技术的发展是否会影响原创内容的价值
AI视频技术的发展显著降低了视频制作的门槛与成本,自动完成剪辑、特效添加等繁琐工作,大大缩短创作时间。它提供个性化创意建议,帮助创作者突破传统思维,拓展创意边界。此外,AI技术使更多非专业人士也能参与视频创作,注入新活力与多样性,丰富了原创内容。总体而言,AI视频技术不仅提升了创作效率,还促进了视频内容的创新与多样化。
|
2天前
|
人工智能 运维 Linux
AI驱动的操作系统服务体验:大模型时代的运维革新
AI驱动的操作系统服务体验:大模型时代的运维革新
16 5
|
2天前
|
机器学习/深度学习 人工智能 编译器
BladeDISC++:Dynamic Shape AI 编译器下的显存优化技术
本文介绍了阿里云 PAI 团队近期发布的 BladeDISC++项目,探讨在动态场景下如何优化深度学习训练任务的显存峰值,主要内容包括以下三个部分:Dynamic Shape 场景下显存优化的背景与挑战;BladeDISC++的创新解决方案;Llama2 模型的实验数据分析
|
2天前
|
存储 人工智能 边缘计算
AI时代下, 边缘云上的技术演进与场景创新
本文介绍了AI时代下边缘云的技术演进与场景创新。主要内容分为三部分:一是边缘云算力形态的多元化演进,强调阿里云边缘节点服务(ENS)在全球600多个节点的部署,提供低时延、本地化和小型化的价值;二是边缘AI推理的创新发展与实践,涵盖低时延、资源广分布、本地化及弹性需求等优势;三是云游戏在边缘承载的技术演进,探讨云游戏对边缘计算的依赖及其技术方案,如多开技术、云存储和网络架构优化,以提升用户体验并降低成本。文章展示了边缘云在未来智能化、实时化解决方案中的重要性。
|
5天前
|
人工智能 运维 监控
评测报告:AI驱动的操作系统服务套件体验
评测报告:AI驱动的操作系统服务套件体验
16 3

热门文章

最新文章