Spark SQL repartition 为啥生成的文件变大了?

简介:

记录一个客户问题

客户用Spark SQL的repartition接口来解决Hive ORC表小文件的问题,发现文件膨胀的很厉害

比如原来有1000个小文件,总大小是500MB
repartition(10) 再 insert overwrite之后

10个文件 总大小是2~3GB

但是检查了一下最终的两个分区的 row count是一致的

调查结论

先说一下这两接口不同

repartition 把record完全打乱最终随机插入到10个文件 有Shuffle
coalesce 把相邻的分区的数据捏在一起,没有Shuffle

为啥shuffle打乱数据会让最终的表输出文件变大

其实就是 ORC 数据编码问题
原来的源分区其实是通过HashPartition的方式分布的,这样的数据分布可以让ORC的编码压缩得更加极致,而repartition完全打乱后导致本来在一个文件的相同记录分布到10个文件,那就是每个文件都有该记录的编码索引,那么最终文件就变大了

所以推荐使用 coalesce 接口来做类似的事情

相关文章
|
28天前
|
SQL JSON 分布式计算
【赵渝强老师】Spark SQL的数据模型:DataFrame
本文介绍了在Spark SQL中创建DataFrame的三种方法。首先,通过定义case class来创建表结构,然后将CSV文件读入RDD并关联Schema生成DataFrame。其次,使用StructType定义表结构,同样将CSV文件读入RDD并转换为Row对象后创建DataFrame。最后,直接加载带有格式的数据文件(如JSON),通过读取文件内容直接创建DataFrame。每种方法都包含详细的代码示例和解释。
|
2月前
|
SQL 数据库
为什么 SQL 日志文件很大,我应该如何处理?
为什么 SQL 日志文件很大,我应该如何处理?
|
2月前
|
SQL 数据库
为什么SQL日志文件很大,该如何处理?
为什么SQL日志文件很大,该如何处理?
|
2月前
|
消息中间件 分布式计算 Kafka
大数据-99 Spark 集群 Spark Streaming DStream 文件数据流、Socket、RDD队列流
大数据-99 Spark 集群 Spark Streaming DStream 文件数据流、Socket、RDD队列流
31 0
|
2月前
|
SQL 分布式计算 大数据
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(一)
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(一)
57 0
|
2月前
|
SQL 分布式计算 算法
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(二)
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(二)
85 0
|
2月前
|
SQL 分布式计算 Java
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
47 0
|
2月前
|
SQL 分布式计算 大数据
大数据-94 Spark 集群 SQL DataFrame & DataSet & RDD 创建与相互转换 SparkSQL
大数据-94 Spark 集群 SQL DataFrame & DataSet & RDD 创建与相互转换 SparkSQL
66 0
|
2月前
|
SQL 存储 分布式计算
大数据-93 Spark 集群 Spark SQL 概述 基本概念 SparkSQL对比 架构 抽象
大数据-93 Spark 集群 Spark SQL 概述 基本概念 SparkSQL对比 架构 抽象
44 0
|
1月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
106 2
ClickHouse与大数据生态集成:Spark & Flink 实战