【云栖号案例 | 制造】攀钢告诉你:钢铁是怎样用AI炼成的?

简介: 在钢铁产业严重过剩、钢企转型压力巨大的背景下,攀钢确定提质增效的目标,一方面扎实推进品种,一方面推进产业升级,打开了科技强企的新局面。

云栖号案例库:【点击查看更多上云案例】
不知道怎么上云?看云栖号案例库,了解不同行业不同发展阶段的上云方案,助力你上云决策!

image

过去20年里,尽管中国贡献了全球粗钢增量的80%,但中国钢铁业的发展不容乐观,产能过剩与结构严重失衡、全球经济下滑导致钢铁需求增速放缓、生产质量的不稳定、废品率高、高耗能以及多元化需求,给整个行业都带来了极大的挑战。中国钢企的转型升级迫在眉睫。

在钢铁产业严重过剩、钢企转型压力巨大的背景下, 作为一个传统“老三线”建设的国有企业,攀钢前些年一直处于亏损状态,通过这几年的改革创新,不仅终结了亏损历史,打了一个漂亮的“翻身仗”,去年全年经营性利润创历史最好水平。它究竟是怎么做到的?

image

依托西部地区丰富的钒钛磁铁矿资源和自主创新建设,攀钢集团有限公司(简称攀钢)已经成为我国特大型钒钛钢铁企业集团、全球第一的产钒企业、国内最大的钛原料和产业链最完整的钛加工企业,以及国内重要的铁路用钢、汽车用钢、家电用钢、特殊钢生产基地。中国的40%的钢轨和高速轨道由攀钢生产的。

尽管行业地位领先,但攀钢一样面对着和行业一样的难点痛点。从2011年到2016年,受国内钢铁产能严重过剩导致的行业普遍亏损,资源不足、位置偏僻、人员多、负担重等多种因素的影响,攀钢持续亏损,企业发展面临巨大挑战。

image

为此,攀钢确定了提质增效的大目标,开始改革创新:一方面扎实推进品种、市场、原料、产线结构调整,铁血降本;一方面推进产业升级,推动钒钛加快发展、钢铁精品发展、非钢创新发展。此外,人力资源方面推行绩效考核新模式,鼓励自主创新等,打开了一个科技强企的新局面。

新技术降低旧能耗

“炼钢就是炼渣”,这是钢铁生产过程中的一句老话。钢由生铁而来,和生铁的主要区别在于成分不同,所谓炼钢就是通过冶炼降低生铁中的碳、去除有害杂质,再根据钢性能要求加入适量合金元素,使之性能优良。为了将原料中一些不需要的杂质去除,就需要进行造渣。造好渣是实现炼钢生产优质、高产、低消耗的重要保证。其中,钢铁料消耗占整个炼钢厂成本的70%以上,攀钢集团需要通过降低钢铁料的消耗,实现减少原料投入及优化能耗成本,才能提升企业的整体综合竞争力。

据攀钢集团成都钢钒有限公司总经理、积微物联总裁谢海介绍,“经过多年的发展,用传统的工艺、工控手段提升产能、降低能耗、节省人力已经趋于钢铁行业极限,而随着工业大数据、云计算等新技术的成熟,我们看到了新的希望。”

攀钢集团和阿里云工业大脑一起合作,以阿里云为技术载体、以积微物联(攀钢电商平台)为平台、以攀钢集团为场景试点,率先深化ET工业大脑在钢铁生产领域的应用。出于数据采集难度、项目风险性与收益等综合因素考虑,最终决定从冷轧板材表面检测与脱硫工业优化两个场景切入,着手工业智能的尝试。

image

脱硫是钢铁生产过程中的一个重要环节,旨在降低铁水或钢液中的硫含量。而脱硫环节由于扒渣带铁(脱硫剂反应之后的脱硫渣中带走了大量的铁)会造成大量铁损。工业大脑应用到攀钢西昌钢钒转炉炼钢工艺后,打通炼钢全流程数据,通过建模分析获得炼钢工艺优化的关键因子,结合专家知识,定位提钒、脱硫和炼钢三个关键工序。通过对这三个工序的深入建模分析,聚焦在脱硫工序,依靠脱硫仿真模型与参数寻优模型寻找最优参数。根据实际测算,通过优化的参数推荐,每生产一吨钢可以节省一公斤铁。对于年产值400万吨钢的攀钢来说,一年的成本节省就在700万元以上 。

image

同时,工业大脑还被应用到了冷轧环节。钢材经过冷轧工艺加工,会形成长度约1千米钢卷。在表面检测环节,质检员通常会在短短5到10分钟内,识别出少则几百个,多则几千个的缺陷,并给出分选度、表面等级、主缺陷和是否合格等判定。但长时间、高强度、重复性且枯燥的质检工作让判钢工程师难以保证判定结果的稳定性,同时,工程师经验的差异也会造成判定水平的参差不齐。最终导致的结果则是客户的服务体验与满意度差,造成巨大的隐性成本。工业大脑的引入,可以辅助人工判断产品缺陷,降低人工依赖性。

image

“老师傅”们的经验复用和传承

钢铁行业历经上百年的发展,累积了大量的经验。然而,经验都是碎片化地藏在“老师傅”的脑袋里,像一个个黑箱,难以形成经验共享与规模化的复用。工业大脑的使命就是将这些隐性化的知识显性化,并帮助打破人的传统思维框架与认知局限。

工业大脑由四块拼图组成——人工智能(AI)、大数据(Big data)、云计算(Cloud computing)、专家经验(Domain knowledge)。简单地讲,就是利用A、B、C技术将D(工厂老师傅、老专家的经验)抽象成知识,并将知识规范化、模型化与代码化,以数字化的方式嵌入到系统与设备当中,被重复调用,指导或是替代人力进行决策与执行。

未来,随着大数据、算力与算法技术的不断成熟,与数据智能相关的工业应用将呈指数级增长。钢铁企业的核心竞争力不在拥有多少产能或是固定资产,而是在于掌握了多少行代码与核心算法。工业智能应用的场景颗粒度会不断细化,面对焦化、烧结、高炉、热轧、炼钢系统、安保、物流、园区、电商等场景,都有机会开放出爆款的工业SaaS或是工业APP。此外,除了持续加强场景化的算法开发能力以及数字基础设施建设(数据中台),更重要的是加快钢铁企业的数字化组织、数字化领导、数字化文化以及数字化人才的转型,创造工业智能的生长与创新土壤。

文:王岳(阿里云研究中心高级战略专家)
责编:李双宏、张晶晶

logo

【云栖号在线课堂】每天都有产品技术专家分享!
在线课堂地址:https://yqh.aliyun.com/zhibo

立即加入社群,与专家面对面,及时了解课程最新动态!
【云栖号在线课堂 社群】https://c.tb.cn/F3.Z8gvnK

相关文章
|
8天前
|
存储 人工智能 Cloud Native
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
在9月20日2024云栖大会上,阿里云智能集团副总裁,数据库产品事业部负责人,ACM、CCF、IEEE会士(Fellow)李飞飞发表《从数据到智能:Data+AI驱动的云原生数据库》主题演讲。他表示,数据是生成式AI的核心资产,大模型时代的数据管理系统需具备多模处理和实时分析能力。阿里云瑶池将数据+AI全面融合,构建一站式多模数据管理平台,以数据驱动决策与创新,为用户提供像“搭积木”一样易用、好用、高可用的使用体验。
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
|
4天前
|
存储 人工智能 文字识别
AI与OCR:数字档案馆图像扫描与文字识别技术实现与项目案例
本文介绍了纸质档案数字化的技术流程,包括高精度扫描、图像预处理、自动边界检测与切割、文字与图片分离抽取、档案识别与文本提取,以及识别结果的自动保存。通过去噪、增强对比度、校正倾斜等预处理技术,提高图像质量,确保OCR识别的准确性。平台还支持多字体识别、批量处理和结构化存储,实现了高效、准确的档案数字化。具体应用案例显示,该技术在江西省某地质资料档案馆中显著提升了档案管理的效率和质量。
|
1月前
|
人工智能 小程序 搜索推荐
成功案例分享|使用AI运动识别插件+微搭,快速搭建AI美体运动小程序
今天给大家分享一个最近使用我们的“AI运动识别小程序插件”+“微搭”搭建小程序的经典案例。
成功案例分享|使用AI运动识别插件+微搭,快速搭建AI美体运动小程序
|
1月前
|
存储 人工智能 Cloud Native
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
阿里云瑶池在2024云栖大会上重磅发布由Data+AI驱动的多模数据管理平台DMS:OneMeta+OneOps,通过统一、开放、多模的元数据服务实现跨环境、跨引擎、跨实例的统一治理,可支持高达40+种数据源,实现自建、他云数据源的无缝对接,助力业务决策效率提升10倍。
|
2月前
|
人工智能 云栖大会 云计算
9.19-9.20 云栖工坊邀您亲手打造AI助手
9.19-9.20 云栖工坊邀您亲手打造AI助手
523 29
|
1月前
|
人工智能 自然语言处理 数据挖掘
利用小蜜蜂AI智能问答ChatGPT+AI高清绘图生成图文故事案例
利用小蜜蜂AI智能问答ChatGPT+AI高清绘图生成图文故事案例
|
1月前
|
人工智能 自然语言处理 搜索推荐
【云栖实录】大模型驱动,开源融合的AI搜索产品发布
本文介绍了2024云栖大会上,阿里云发布的年度AI搜索产品详情。
157 1
|
2月前
|
消息中间件 人工智能 Cloud Native
|
2月前
|
存储 人工智能 Cloud Native
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
阿里云数据库重磅升级!元数据服务OneMeta + OneOps统一管理多模态数据
|
2月前
|
数据采集 机器学习/深度学习 人工智能
云栖实录 | GenAI 时代 AI Infra 工程技术趋势与平台演进
本文根据2024云栖大会实录整理而成,演讲信息如下: 演讲人:林伟 | 阿里云智能集团研究员、阿里云人工智能平台 PAI 负责人;黄博远|阿里云智能集团资深产品专家、阿里云人工智能平台 PAI 产品负责人 活动:2024 云栖大会 - AI Infra 核心技术专场、人工智能平台 PAI 年度发布专场

热门文章

最新文章

下一篇
无影云桌面