斯坦福大学发布吴恩达团队最新成果:利用 AI 帮助检测脑动脉瘤

简介: 放射科医师借助医学专家和计算机科学家开发的人工智能算法改进了脑动脉瘤的诊断。

雷锋网消息,北京时间6月8日,斯坦福大学官网发布了吴恩达团队的一项最新成果:放射科医师借助人工智能算法改进了脑动脉瘤的诊断——脑动脉瘤是大脑血管中的隆起物,可能会渗漏或破裂,可能导致中风、脑损伤或死亡。

TB1WNEAb9SD3KVjSZFKXXb10VXa.png

这项成果发表在了JAMA Network Open上。斯坦福大学统计学研究生、该论文的联合第一作者Allison Park说,“人们对机器学习在医学领域的实际作用有很多担忧。这项研究显示了人类如何在人工智能工具的帮助下参与诊断过程。”

据雷锋网(公众号:雷锋网)了解,该工具围绕一种名为HeadXNet的算法构建,可以提高临床医生正确识别动脉瘤的能力,其水平相当于在包含动脉瘤的100次扫描中发现另外六个动脉瘤,除此之外,它还能提高临床口译医生的共识。

TB18AAFb8Cw3KVjSZFlXXcJkFXa.gif

在脑部扫描中,HeadXNet使用透明的红色高光指示动脉瘤的位置。(图片来源:Allison Park)

虽然HeadXNet在这些实验中取得的成功很有价值,但研究团队提醒说,需要进一步调查,以便在实际临床部署之前评估AI工具的鲁棒性,因为不同医院拥有不同的设备硬件和成像协议,研究人员计划通过多中心合作解决这些问题。

医师在AI帮助下降低了漏诊率

对脑部扫描结果进行梳理、寻找动脉瘤意味着要浏览数百幅图像。动脉瘤有多种大小和形状,并以不同的角度向外膨胀——有些动脉瘤在一系列类似电影的图像中不过是一个光点。

“寻找动脉瘤是放射科医生最费力、最关键的任务之一,”放射学副教授、该论文的联合高级作者Kristen Yeom说,“考虑到复杂的神经血管解剖结构所带来的固有挑战,以及遗漏动脉瘤可能导致的致命后果,这促使我将计算机科学和视觉的进步成果应用于神经成像。”

Yeom将这个想法带到了斯坦福机器学习小组运行的AI for Healthcare Bootcamp,该小组由计算机科学副教授兼该论文的共同高级作者Andrew Ng(吴恩达)领导。小组的核心挑战是创建一种人工智能工具,可以准确地处理这些大量的3D图像并补充临床诊断实践。

TB1zOAyb21H3KVjSZFBXXbSMXXa.jpg

HeadXNet团队成员从左到右分别是:Andrew Ng,Kristen Yeom,Christopher Chute,Pranav Rajpurkar和Allison Park(图片来源:LA Cicero)

为了训练他们的算法,Yeom与Park和计算机科学研究生Christopher Chute合作,收集了611例头部CT血管造影中检测到的临床意义显着的动脉瘤。

“我们手工标记了每一个体素——相当于一个像素的3D图像——是否属于动脉瘤的一部分,”Chute说,“建立训练数据是一项相当艰巨的任务,数据量很大。”

经过训练之后,算法确定扫描的每个体素是否存在动脉瘤。

HeadXNet工具的最终结果是算法的结论以半透明的高亮显示在扫描的顶部。这种算法决策的表示形式,使得临床医生在没有HeadXNet输入的情况下仍然可以很容易地看到扫描结果。

“我们感兴趣的是,这些带有人工智能功能的扫描结果将如何提高临床医生的表现,”Pranav Rajpurkar说,他是一名计算机科学研究生,也是该论文的共同主要作者。“我们能够将动脉瘤的确切位置标记给临床医生看,而不仅仅是让算法说图像中包含动脉瘤。”

通过评估一组115个动脉瘤的脑部扫描,八名临床医生对HeadXNet进行了测试,一次是在HeadXNet的帮助下进行的,一次没有。

通过该工具,临床医生正确识别出了更多的动脉瘤,从而降低了“漏诊率”,而且医生之间更有可能达成一致。此外,HeadXNet并没有影响临床医生决定诊断所需的时间,也没有影响医生在患者没有动脉瘤的情况下正确识别扫描的能力。

并不只是人工智能的自动化

雷锋网了解到,HeadXNet核心的机器学习方法可能会被用来识别大脑内外的其他疾病。例如,Yeom设想未来的版本可以专注于加速动脉瘤破裂后的识别,从而在紧急情况下节省宝贵的时间。但是,将任何人工智能医疗工具与医院放射科的日常临床工作流程集成起来仍然存在相当大的障碍。

目前的扫描查看器并不是为配合深度学习而设计的,因此研究人员不得不开发定制的工具,将HeadXNet集成到扫描查看器中。

类似地,真实数据的变化——与算法所测试和训练的数据相反——可能会降低模型性能。如果该算法处理来自不同种类设备或成像协议的数据,或者处理不属于其原始训练的患者群体的数据,那么它可能不会像预期那样工作。

吴恩达说:“由于这些问题,我认为部署速度将会加快,不是单纯的人工智能自动化,而是人工智能和放射科医生的合作。我们仍有技术和非技术工作要做,但作为一个团队,我们将达到这一目标,人工智能与放射科医生的合作是最有希望的途径。”

目录
相关文章
|
18天前
|
人工智能 安全 搜索推荐
北大计算机学院再登国际AI顶刊!张铭教授团队揭露医疗AI致命漏洞
【10月更文挑战第17天】北京大学计算机学院张铭教授团队在国际顶级人工智能期刊上发表重要成果,揭示了医疗AI系统中的致命漏洞——“模型反演”。该漏洞可能导致误诊和医疗事故,引起学术界和工业界的广泛关注。研究强调了医疗AI系统安全性评估的重要性。
34 1
|
2月前
|
JSON 人工智能 数据格式
AI计算机视觉笔记二十六:YOLOV8自训练关键点检测
本文档详细记录了使用YOLOv8训练关键点检测模型的过程。首先通过清华源安装YOLOv8,并验证安装。接着通过示例权重文件与测试图片`bus.jpg`演示预测流程。为准备训练数据,文档介绍了如何使用`labelme`标注工具进行关键点标注,并提供了一个Python脚本`labelme2yolo.py`将标注结果从JSON格式转换为YOLO所需的TXT格式。随后,通过Jupyter Notebook可视化标注结果确保准确性。最后,文档展示了如何组织数据集目录结构,并提供了训练与测试代码示例,包括配置文件`smoke.yaml`及训练脚本`train.py`,帮助读者完成自定义模型的训练与评估。
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
o1医学领域大胜GPT-4,性能暴涨!顶尖华人团队激动发文:离AI医生越来越近了
【10月更文挑战第29天】近日,一支顶尖华人团队发布论文《A Preliminary Study of o1 in Medicine: Are We Closer to an AI Doctor?》,揭示了OpenAI最新语言模型o1在医学领域的卓越表现。研究显示,o1在概念识别、文本总结、问答等任务上远超GPT-4,显著提升了医学领域的AI应用水平,向实现AI医生的目标迈进了一大步。
16 3
|
20天前
|
人工智能 安全 搜索推荐
北大计算机学院再登国际AI顶刊!张铭教授团队揭露医疗AI致命漏洞
【10月更文挑战第16天】北京大学张铭教授团队在国际顶级人工智能期刊上发表重要成果,揭示了医疗AI系统中的致命漏洞——“模型反演”。该漏洞可使攻击者通过特定数据样本误导AI诊断,引发误诊风险。此发现引起广泛关注,强调了医疗AI安全评估的重要性。
43 4
|
20天前
|
数据采集 人工智能 安全
CIO面临更快交付AI成果的压力
CIO面临更快交付AI成果的压力
|
29天前
|
机器学习/深度学习 人工智能 JSON
微信小程序原生AI运动(动作)检测识别解决方案
近年来,疫情限制了人们的出行,却推动了“AI运动”概念的兴起。AI运动已在运动锻炼、体育教学、线上主题活动等多个场景中广泛应用,受到互联网用户的欢迎。通过AI技术,用户可以在家中进行有效锻炼,学校也能远程监督学生的体育活动,同时,云上健身活动形式多样,适合单位组织。该方案成本低、易于集成和扩展,已成功应用于微信小程序。
|
24天前
|
机器学习/深度学习 人工智能 算法框架/工具
基于人体姿势估计的舞蹈检测(AI Dance based on Human Pose Estimation)
基于人体姿势估计的舞蹈检测(AI Dance based on Human Pose Estimation)
41 0
|
2月前
RTX3090可跑,360AI团队开源最新视频模型FancyVideo
【9月更文挑战第23天】近年来,人工智能技术的迅猛发展推动了视频生成领域的进步,但在合成动态、连贯且时长较长的视频方面仍面临挑战。为此,360AI团队提出了FancyVideo模型,通过跨帧文本指导实现更为连贯的视频生成。FancyVideo引入了跨帧文本指导模块(CTGM),包含时间信息注入器(TII)、时间相关性优化器(TAR)和时间特征增强器(TFB)三个组件,分别负责注入帧特定信息、优化相关性和增强时间一致性。这些机制使模型能生成具有连贯动作和丰富运动的视频,适用于动画制作和视频编辑等领域。然而,FancyVideo也存在计算复杂度高和细节真实感提升空间等局限。
46 3
|
3月前
|
人工智能 自然语言处理 Java
Spring AI,Spring团队开发的新组件,Java工程师快来一起体验吧
文章介绍了Spring AI,这是Spring团队开发的新组件,旨在为Java开发者提供易于集成的人工智能API,包括机器学习、自然语言处理和图像识别等功能,并通过实际代码示例展示了如何快速集成和使用这些AI技术。
Spring AI,Spring团队开发的新组件,Java工程师快来一起体验吧
|
2月前
|
人工智能 计算机视觉
AI计算机视觉笔记十五:编写检测的yolov5测试代码
该文为原创文章,如需转载,请注明出处。本文作者在成功运行 `detect.py` 后,因代码难以理解而编写了一个简易测试程序,用于加载YOLOv5模型并检测图像中的对象,特别是“人”类目标。代码实现了从摄像头或图片读取帧、进行颜色转换,并利用YOLOv5进行推理,最后将检测框和置信度绘制在输出图像上,并保存为 `result.jpg`。如果缺少某些模块,可使用 `pip install` 安装。如涉及版权问题或需获取完整代码,请联系作者。
下一篇
无影云桌面