MaxCompute数仓构建流程基本概念

本文涉及的产品
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 本文利用图文解析,让您更直观的了解MaxCompute数仓构建流程。

云栖号快速入门:【点击查看更多云产品快速入门】
不知道怎么入门?这里分分钟解决新手入门等基础问题,可快速完成产品配置操作!

下图为MaxCompute数据仓库构建的整体流程。

image

基本概念

在正式学习本教程之前,您需要首先理解以下基本概念:

  • 业务板块:比数据域更高维度的业务划分方法,适用于庞大的业务系统。
  • 维度:维度建模由Ralph Kimball提出。维度模型主张从分析决策的需求出发构建模型,为分析需求服务。维度是度量的环境,是我们观察业务的角度,用来反映业务的一类属性 。属性的集合构成维度 ,也可以称为实体对象。例如, 在分析交易过程时,可以通过买家、卖家、商品和时间等维度描述交易发生的环境。
  • 属性(维度属性):维度所包含的表示维度的列称为维度属性。维度属性是查询约束条件、分组和报表标签生成的基本来源,是数据易用性的关键。
  • 度量:在维度建模中,将度量称为事实 ,将环境描述为维度,维度是用于分析事实所需要的多样环境。度量通常为数值型数据,作为事实逻辑表的事实。
  • 指标:指标分为原子指标和派生指标。原子指标是基于某一业务事件行为下的度量,是业务定义中不可再拆分的指标,是具有明确业务含义的名词 ,体现明确的业务统计口径和计算逻辑,例如支付金额。

(1).原子指标=业务过程+度量。
(2).派生指标=时间周期+修饰词+原子指标,派生指标可以理解为对原子指标业务统计范围的圈定。

  • 业务限定:统计的业务范围,筛选出符合业务规则的记录(类似于SQL中where后的条件,不包括时间区间)。
  • 统计周期:统计的时间范围,例如最近一天,最近30天等(类似于SQL中where后的时间条件)。
  • 统计粒度:统计分析的对象或视角,定义数据需要汇总的程度,可理解为聚合运算时的分组条件(类似于SQL中的group by的对象)。粒度是维度的一个组合,指明您的统计范围。例如,某个指标是某个卖家在某个省份的成交额,则粒度就是卖家、地区这两个维度的组合。如果您需要统计全表的数据,则粒度为全表。在指定粒度时,您需要充分考虑到业务和维度的关系。统计粒度常作为派生指标的修饰词而存在。
    基本概念之间的关系和举例如下图所示。

image
image

本文来自 阿里云文档中心 MaxCompute 数仓构建流程

【云栖号在线课堂】每天都有产品技术专家分享!
课程地址:https://yqh.aliyun.com/zhibo

立即加入社群,与专家面对面,及时了解课程最新动态!
【云栖号在线课堂 社群】https://c.tb.cn/F3.Z8gvnK

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
目录
相关文章
|
2月前
|
数据采集 机器学习/深度学习 存储
大数据的处理流程
【10月更文挑战第16天】
117 2
|
2月前
|
消息中间件 分布式计算 大数据
大数据-166 Apache Kylin Cube 流式构建 整体流程详细记录
大数据-166 Apache Kylin Cube 流式构建 整体流程详细记录
68 5
|
2月前
|
存储 分布式计算 大数据
大数据-169 Elasticsearch 索引使用 与 架构概念 增删改查
大数据-169 Elasticsearch 索引使用 与 架构概念 增删改查
62 3
|
2月前
|
存储 SQL 分布式计算
大数据-162 Apache Kylin 全量增量Cube的构建 Segment 超详细记录 多图
大数据-162 Apache Kylin 全量增量Cube的构建 Segment 超详细记录 多图
58 3
|
2月前
|
消息中间件 分布式计算 大数据
大数据-123 - Flink 并行度 相关概念 全局、作业、算子、Slot并行度 Flink并行度设置与测试
大数据-123 - Flink 并行度 相关概念 全局、作业、算子、Slot并行度 Flink并行度设置与测试
117 0
|
1月前
|
消息中间件 人工智能 监控
Paimon x StarRocks 助力喜马拉雅直播实时湖仓构建
本文由喜马拉雅直播业务与仓库建设负责人王琛撰写,介绍了喜马拉雅直播业务的数据仓库架构迭代升级。文章重点分享了基于 Flink + Paimon + StarRocks 实现实时湖仓的架构及其成效,通过分钟级别的收入监控、实时榜单生成、流量监测和盈亏预警,大幅提升了运营效率与决策质量,并为未来的业务扩展和 AI 项目打下坚实基础。
174 5
Paimon x StarRocks 助力喜马拉雅直播实时湖仓构建
|
2月前
|
数据采集 数据可视化 大数据
大数据体系知识学习(三):数据清洗_箱线图的概念以及代码实现
这篇文章介绍了如何使用Python中的matplotlib和numpy库来创建箱线图,以检测和处理数据集中的异常值。
49 1
大数据体系知识学习(三):数据清洗_箱线图的概念以及代码实现
|
2月前
|
Java 大数据 数据库连接
大数据-163 Apache Kylin 全量增量Cube的构建 手动触发合并 JDBC 操作 Scala
大数据-163 Apache Kylin 全量增量Cube的构建 手动触发合并 JDBC 操作 Scala
31 2
大数据-163 Apache Kylin 全量增量Cube的构建 手动触发合并 JDBC 操作 Scala
|
29天前
|
数据管理 大数据 OLAP
AnalyticDB核心概念详解:表、索引与分区
【10月更文挑战第25天】在大数据时代,高效的数据库管理和分析工具变得尤为重要。阿里云的AnalyticDB(ADB)是一款完全托管的实时数据仓库服务,能够支持PB级数据的实时查询和分析。作为一名数据工程师,我有幸在多个项目中使用过AnalyticDB,并积累了丰富的实践经验。本文将从我个人的角度出发,详细介绍AnalyticDB的核心概念,包括表结构设计、索引类型选择和分区策略,帮助读者更有效地组织和管理数据。
36 3
|
1月前
|
SQL 存储 数据挖掘
快速入门:利用AnalyticDB构建实时数据分析平台
【10月更文挑战第22天】在大数据时代,实时数据分析成为了企业和开发者们关注的焦点。传统的数据仓库和分析工具往往无法满足实时性要求,而AnalyticDB(ADB)作为阿里巴巴推出的一款实时数据仓库服务,凭借其强大的实时处理能力和易用性,成为了众多企业的首选。作为一名数据分析师,我将在本文中分享如何快速入门AnalyticDB,帮助初学者在短时间内掌握使用AnalyticDB进行简单数据分析的能力。
40 2