用好阿里云分析型数据库大存储实例,大幅降低大数据应用成本

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介: 在企业的业务中,经常拥有海量的历史结构化数据,虽然不会高频度的使用,但是不排除会不定期的被检索、查询(检索频率一般在100-1000次每天)。如物联网、交易历史详单查询、监控/日志数据检索等场景。这时企业需要廉价的存储计算方案,但是又不能将数据存储于离线计算系统或归档到对象存储系统,就需要使用分析.

在企业的业务中,经常拥有海量的历史结构化数据,虽然不会高频度的使用,但是不排除会不定期的被检索、查询(检索频率一般在100-1000次每天)。如物联网、交易历史详单查询、监控/日志数据检索等场景。这时企业需要廉价的存储计算方案,但是又不能将数据存储于离线计算系统或归档到对象存储系统,就需要使用分析型数据库的大存储实例了。

SATA、SSD、内存分析混合存储,提供低廉的存储成本(不同规格从0.093元/GB/天到0.051元/GB/天),仅为分析型数据库高性能实例的1/10,而又通过先进的动态二级缓存和分段索引技术提供相对较好的查询检索性能以及与高性能实例等同的数据与服务可用性。

大存储实例工作原理

分析型数据库每一个大存储实例配备内存、SSD缓存和使用SATA盘的分布式存储三级存储设备。用户的数据存储在SATA盘上,具有极低的存储成本。根据用户的查询频度以及获得多个专利的智能缓存算法,分析型数据库将用户高频查询或影响查询性能的关键数据自动换入到SSD缓存甚至内存中以加速用户查询。因此使用大存储实例时用户会发现一份数据前两三次查询较慢,但是随后查询速度便会快了很多,方便用户使用针对历史数据检索后再进行详细研判分析的应用。

另外用户若使用实时写入表,当天写入(一般是前一天20:00至当天20:00,实为未经optimize table的增量数据部分)的数据全部暂存于SSD中,每日自动的optimize table运行后会刷到SATA存储上。

大存储实例适合IO数据量和并发量较低的查询,如筛选率很高的历史数据检索等场景,在一次查询IO较多的情形(如大量数据进行join、全表group by、全表排序等)性能较高性能实例有比较大的差别。另外集群的网络规格会对大存储实例的性能有较大的影响,例如s1n/s2n实例采用双万兆网集群,性能较采用千兆网集群的s1/s2实例好3-5倍。

大存储实例主要应用场景

  • 企业海量历史库,如订单流水、GPS轨迹分析、电信话单检索、日志分析、监控数据检索、物联网传感器数据检索等;
  • 和分析型数据库高性能实例结合使用,近期高频度查询的数据放置在高性能实例(使用最大二级分区数功能管理保存的天数),全量历史数据放置在大存储实例中,应用程序通过用户选择的时间区间确定查询的数据库连接,以同一份代码兼得高性能查询和历史数据低成本存储。

大存储实例应用实战

企业内部BI系统

企业内部BI系统通常具有热点数据集中(近期数据或一段时间内要集中研究的数据集),整体并发较低,对查询响应时间的要求通常也不是很苛刻。所以在成本敏感的情况下,可以全部是使用分析型数据库大存储实例,获得很高的性价比。

基于分析型数据库以及其他阿里云、阿里云"数加"系列产品搭配,提供了企业内部BI的完整解决方案:

1

可以看到阿里云提供了从数据采集、同步,到可视化大屏、BI报表、以及灵活构建用户的CRM/DMP等基于客户维度的分析场景(使用画像分析作为中间件构建)。

冷热数据分离的在线业务系统

大部分大数据业务系统,都具有依时间来区分数据冷热的特征。例如最近3个月的数据是热数据,有很高的查询并发,并且需要很快速的查询响应时间。而三个月之前的数据均是冷数据,可能有累计多年的数据,极少查询但是又不能不提供查询。

这时就可以同时使用分析型数据库的高性能、大存储两个实例,数据同步时双写这两个实例,而利用分析型数据库提供的表最大二级分区数功能,以日期作为大表的二级分区列并在两个实例的表中设置不同的二级分区数(例如高性能实例表90,大存储实例表365),分析型数据库就会自动淘汰超过日期的对应数据,保证高性能实例只有最近90天,大存储实例存储最近一年的数据。

2

分析型数据库的高性能实例和大存储实例的SQL支持完全相同,前端应用只需要根据用户点选的时间区间来决定使用哪一个实例即可,不需要对查询SQL做任何修改,就可以兼得热点数据的高速查询和历史冷数据的低成本存储。

根据业务适配区分存储模式的综合应用

还有一种应用场景是,根据不同的应用类型,选择不同的实例进行处理,这在专有云中非常常见。例如以查询返回列不多(20列以内)的多条件明细查询为主的应用,就比较适合大存储实例(前提是并发不高)。而进行大量的join、union(all)、group by的应用,例如综合研判、复杂的报表或其他高并发要求的应用就比较适合高性能实例。

大存储实例规格说明和定价

47F012A2_0A7E_4B52_87DB_6846F2A31C54

阿里云分析型数据库产品详情:https://www.aliyun.com/product/ads

更多精彩活动:【有“福”同享.第二季】每日一分享,虚机邮箱免费用

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
目录
相关文章
|
2月前
|
SQL 存储 分布式计算
ODPS技术架构深度剖析与实战指南——从零开始掌握阿里巴巴大数据处理平台的核心要义与应用技巧
【10月更文挑战第9天】ODPS是阿里巴巴推出的大数据处理平台,支持海量数据的存储与计算,适用于数据仓库、数据挖掘等场景。其核心组件涵盖数据存储、计算引擎、任务调度、资源管理和用户界面,确保数据处理的稳定、安全与高效。通过创建项目、上传数据、编写SQL或MapReduce程序,用户可轻松完成复杂的数据处理任务。示例展示了如何使用ODPS SQL查询每个用户的最早登录时间。
101 1
|
26天前
|
人工智能 Cloud Native 数据管理
媒体声音|重磅升级,阿里云发布首个“Data+AI”驱动的一站式多模数据平台
在2024云栖大会上,阿里云瑶池数据库发布了首个一站式多模数据管理平台DMS:OneMeta+OneOps。该平台由Data+AI驱动,兼容40余种数据源,实现跨云数据库、数据仓库、数据湖的统一数据治理,帮助用户高效提取和分析元数据,提升业务决策效率10倍。DMS已服务超10万企业客户,降低数据管理成本高达90%。
104 19
|
28天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
2月前
|
存储 分布式计算 druid
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
62 1
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
ly~
|
2月前
|
供应链 搜索推荐 安全
大数据模型的应用
大数据模型在多个领域均有广泛应用。在金融领域,它可用于风险评估与预测、智能营销及反欺诈检测,助力金融机构做出更加精准的决策;在医疗领域,大数据模型能够协助疾病诊断与预测、优化医疗资源管理和加速药物研发;在交通领域,该技术有助于交通流量预测、智能交通管理和物流管理,从而提升整体交通效率;电商领域则借助大数据模型实现商品推荐、库存管理和价格优化,增强用户体验与企业效益;此外,在能源和制造业中,大数据模型的应用范围涵盖从需求预测到设备故障预测等多个方面,全面推动了行业的智能化转型与升级。
ly~
122 2
|
2月前
|
SQL 分布式计算 数据挖掘
加速数据分析:阿里云Hologres在实时数仓中的应用实践
【10月更文挑战第9天】随着大数据技术的发展,企业对于数据处理和分析的需求日益增长。特别是在面对海量数据时,如何快速、准确地进行数据查询和分析成为了关键问题。阿里云Hologres作为一个高性能的实时交互式分析服务,为解决这些问题提供了强大的支持。本文将深入探讨Hologres的特点及其在实时数仓中的应用,并通过具体的代码示例来展示其实际应用。
193 0
|
18天前
|
SQL 关系型数据库 MySQL
12 PHP配置数据库MySQL
路老师分享了PHP操作MySQL数据库的方法,包括安装并连接MySQL服务器、选择数据库、执行SQL语句(如插入、更新、删除和查询),以及将结果集返回到数组。通过具体示例代码,详细介绍了每一步的操作流程,帮助读者快速入门PHP与MySQL的交互。
32 1
|
20天前
|
SQL 关系型数据库 MySQL
go语言数据库中mysql驱动安装
【11月更文挑战第2天】
35 4
|
27天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
150 1
|
29天前
|
关系型数据库 MySQL Linux
在 CentOS 7 中通过编译源码方式安装 MySQL 数据库的详细步骤,包括准备工作、下载源码、编译安装、配置 MySQL 服务、登录设置等。
本文介绍了在 CentOS 7 中通过编译源码方式安装 MySQL 数据库的详细步骤,包括准备工作、下载源码、编译安装、配置 MySQL 服务、登录设置等。同时,文章还对比了编译源码安装与使用 RPM 包安装的优缺点,帮助读者根据需求选择最合适的方法。通过具体案例,展示了编译源码安装的灵活性和定制性。
85 2

热门文章

最新文章

相关产品

  • 云原生数据仓库AnalyticDB MySQL版