Quick 引擎-抽取性能提升
本文介绍了一种通过并发抽取方案提升 Quick BI 数据抽取性能的方法,利用 DataX 进行二次开发,实现数据同步至高性能 OLAP 引擎。通过指定分区键或配置多条 SQL 实现任务拆分,显著减少了数据抽取时间,优化效果得到客户认可。
云栖大会|数据库与AI全面融合,迈入数据智能新纪元
2024年云栖大会「数据库与AI融合」专场,来自NVIDIA、宇视科技、合思信息、杭州光云科技、MiniMax等企业的代表与阿里云瑶池数据库团队,共同分享了Data+AI全面融合的最新技术进展。阿里云发布了DMS的跨云统一开放元数据OneMeta和智能开发OneOps,推出《云数据库运维》技术图书,并介绍了PolarDB、AnalyticDB、Lindorm和Tair等产品的最新能力,展示了AI在数据库领域的广泛应用和创新。
构建高可用性ClickHouse集群:从单节点到分布式
【10月更文挑战第26天】随着业务的不断增长,单一的数据存储解决方案可能无法满足日益增加的数据处理需求。在大数据时代,数据库的性能、可扩展性和稳定性成为企业关注的重点。ClickHouse 是一个用于联机分析处理(OLAP)的列式数据库管理系统(DBMS),以其卓越的查询性能和高吞吐量而闻名。本文将从我的个人角度出发,分享如何将单节点 ClickHouse 扩展为高可用性的分布式集群,以提升系统的稳定性和可靠性。
AnalyticDB 实时数仓架构解析
AnalyticDB 是阿里云自研的 OLAP 数据库,广泛应用于行为分析、数据报表、金融风控等应用场景,可支持 100 trillion 行记录、10PB 量级的数据规模,亚秒级完成交互式分析查询。本文是对 《 AnalyticDB: Real-time OLAP Database System at Alibaba Cloud 》的学习总结。
AnalyticDB安全与合规:数据保护与访问控制
【10月更文挑战第25天】在当今数据驱动的时代,数据的安全性和合规性成为了企业关注的重点。AnalyticDB(ADB)作为阿里云推出的一款高性能实时数据仓库服务,提供了丰富的安全特性来保护数据。作为一名长期使用AnalyticDB的数据工程师,我深知加强数据安全的重要性。本文将从我个人的角度出发,分享如何通过数据加密、访问控制和审计日志等手段加强AnalyticDB的安全性,确保数据的安全性和合规性。
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
优化AnalyticDB性能:查询优化与资源管理
【10月更文挑战第25天】在大数据时代,实时分析和处理海量数据的能力成为了企业竞争力的重要组成部分。阿里云的AnalyticDB(ADB)是一款完全托管的实时数据仓库服务,支持PB级数据的秒级查询响应。作为一名已经有一定AnalyticDB使用经验的开发者,我发现通过合理的查询优化和资源管理可以显著提升ADB的性能。本文将从个人角度出发,分享我在实践中积累的经验,帮助读者更好地利用ADB的强大功能。