Data Lake Analytics: 使用DataWorks来调度DLA任务

简介: DataWorks作为阿里云上广受欢迎的大数据开发调度服务,最近加入了对于Data Lake Analytics的支持,意味着所有Data Lake Analytics的客户可以获得任务开发、任务依赖关系管理、任务调度、任务运维等等全方位强大的能力,今天就给大家介绍一下如何使用DataWorks来调度DLA的脚本任务。

dla_plus_dataworks

DataWorks作为阿里云上广受欢迎的大数据开发调度服务,最近加入了对于Data Lake Analytics的支持,意味着所有Data Lake Analytics的客户可以获得任务开发、任务依赖关系管理、任务调度、任务运维等等全方位强大的能力,今天就给大家介绍一下如何使用DataWorks来调度DLA的脚本任务。

开通DLA

在开始之前我们要有一个 DLA 的账号,目前 DLA 的新用户都有50T的免费流量,可以放心试用。开通DLA成功后,你会获得一个用户名和密码, 然后在控制台登录就可以使用:

控制台1

或者如果你是极客,更偏爱命令行,你也可以使用普通的 MySQL 客户端就可以连接 DLA 了:

mysql -hservice.cn-region.datalakeanalytics.aliyuncs.com 
      -P10000 
      -u<your-user-name> 
      -p<your-password>

在这篇文章里面,我会使用 MySQL 命令行给大家演示 DLA 的功能。

申请试用 DataWorks + DLA

开通DLA服务之后,您还需要开通DataWorks的服务,目前DataWorks还在公测阶段,放心使用。

然后您可以在您对应的DLA服务群里面找我们任何一位同学开通一下DLA + DataWorks的试用资格(目前这个功能还处于邀请试用的阶段,没有完全放开)。

如果目前还没有专门DLA服务群的客户,可以通过工单联系我们。

DLA数据、库、表准备

为了演示如何在DataWorks上调度DLA的任务,我们后面会用到一些测试数据,这里我们用著名的TPCH的测试数据集, 数据保存在OSS上面。

OSS数据集

通过MySQL命令行我们创建对应的库、表:

CREATE SCHEMA dataworks_demo with DBPROPERTIES(
  CATALOG = 'oss',
  LOCATION = 'oss://test-bucket/datasets/'  
);

use dataworks_demo;
CREATE EXTERNAL TABLE IF NOT EXISTS orders (
    O_ORDERKEY INT, 
    O_CUSTKEY INT, 
    O_ORDERSTATUS STRING, 
    O_TOTALPRICE DOUBLE, 
    O_ORDERDATE DATE, 
    O_ORDERPRIORITY STRING, 
    O_CLERK STRING, 
    O_SHIPPRIORITY INT, 
    O_COMMENT STRING
) 
ROW FORMAT DELIMITED FIELDS TERMINATED BY '|' 
STORED AS TEXTFILE 
LOCATION 'oss://test-bucket/datasets/tpch/1x/text_string/orders_text/';

-- 结果表 finished_orders
CREATE EXTERNAL TABLE IF NOT EXISTS finished_orders (
    O_ORDERKEY INT,  
    O_TOTALPRICE DOUBLE
) 
ROW FORMAT DELIMITED FIELDS TERMINATED BY '|' 
STORED AS TEXTFILE 
LOCATION 'oss://test-bucket/datasets/dataworks_demo/finished_orders/';

-- 结果表 high_value_finished_orders
CREATE EXTERNAL TABLE IF NOT EXISTS high_value_finished_orders (
    O_ORDERKEY INT, 
    O_TOTALPRICE DOUBLE
) 
ROW FORMAT DELIMITED FIELDS TERMINATED BY '|' 
STORED AS TEXTFILE 
LOCATION 'oss://test-bucket/datasets/dataworks_demo/high_value_finished_orders/';

任务调度其中一个重要的功能是任务之间的依赖,为了演示这个功能,我们这里会在DataWorks里面创建两个DLA任务, 我们的表、任务之间的关系如下图:

  • 任务一: 我们从orders表清洗出已经完成的订单: o_orderstatus = 'F' , 并写入 finished_orders 表
  • 任务二: 再从 finished_orders 表里面找出总价大于10000的订单: o_totalprice > 10000, 并写入 high_value_finished_orders

关于如何使用DLA分析OSS数据更详细的信息可以参考:

在 DataWorks 上创建 DLA 任务

在开通了 DataWorks + DLA 的功能后,我们可以在DataWorks的数据开发IDE里面创建DLA的任务了,如下图:

dla_task_in_dataworks

我们把第一个任务命名为: finished_orders , 点击确定会进入一个SQL编辑的页面,要写DLA SQL一定要告诉DataWorks我们写的SQL运行在哪个DLA的服务上,这个在DataWorks里面被包装成了"数据源"的概念:

DataWorks的规范是任务的名称跟任务的输出表的名称保持一致。

before_create_datasource

刚进来的时候没有数据源,点击新建数据源:

dla_datasource_icon

填写必要的信息点击确定完成。

dla_datasource_details

DataWorks为了安全的考虑,对可以连接的服务进行了安全控制,因此我们需要把我们要连的DLA的地址+端口加到白名单里面去,这个配置是在DataWorks工作空间的配置里面:

click_on_namespace_config

具体配置如下(需要换成你实际的IP+端口):

security_config

这里需要注意一下,工作空间配置只有工作空间管理员才有权限。

做了这么多之后,我们终于可以在编辑页面看到DLA的数据源了,下面我们在 finished_orders 的任务里面填入如下SQL, 并点击执行:

use dataworks_demo;
insert into finished_orders
select O_ORDERKEY, O_TOTALPRICE
from orders 
where O_ORDERSTATUS = 'F';

如下图:

task_finished_orders

重复上述步骤,我们创建第二个任务: high_value_finished_orders:

use dataworks_demo;
insert into high_value_finished_orders
select * from finished_orders
where O_TOTALPRICE > 10000;

配置任务依赖

单个任务单次运行没什么太大意思,任务调度的核心在于多个任务按照指定的依赖关系在指定的时间进行运行,下面我们让: task_finished_orders 在每天半夜2点开始运行:

task_finished_orders_dep

high_value_finished_ordersfinished_orders 成功运行之后再运行:

task_high_value_finished_orders_dep

任务发布

任务配置好之后,就可以进行任务的发布、运维了。任务要发布首先必须提交:

submit_job

提交之后,我们在待发布列表可以看到所有待发布的任务:

all_submited_jobs

选择我们刚刚提交的两个任务,我们就可以发布了:

deploy

在发布列表页面可以查看我们刚刚的发布是否成功:

deployed_package

发布成功之后,我们就可以进入任务运维页面查看我们的任务,进行各种运维操作了。

task_ops

总结

在这篇文章里面,我带大家一起体验了一下如何用 DataWorks 来开发、调度DLA的任务,有了这个能力之后大家可以更方便地进行每天任务的开发、运维了。

Happy DLAing.

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
一站式大数据开发治理平台DataWorks初级课程
DataWorks 从 2009 年开始,十ー年里一直支持阿里巴巴集团内部数据中台的建设,2019 年双 11 稳定支撑每日千万级的任务调度。每天阿里巴巴内部有数万名数据和算法工程师正在使用DataWorks,承了阿里巴巴 99%的据业务构建。本课程主要介绍了阿里巴巴大数据技术发展历程与 DataWorks 几大模块的基本能力。 课程目标 &nbsp;通过讲师的详细讲解与实际演示,学员可以一边学习一边进行实际操作,可以深入了解DataWorks各大模块的使用方式和具体功能,让学员对DataWorks数据集成、开发、分析、运维、安全、治理等方面有深刻的了解,加深对阿里云大数据产品体系的理解与认识。 适合人群 &nbsp;企业数据仓库开发人员 &nbsp;大数据平台开发人员 &nbsp;数据分析师 &nbsp;大数据运维人员 &nbsp;对于大数据平台、数据中台产品感兴趣的开发者
目录
相关文章
|
2天前
|
DataWorks
|
17天前
|
SQL 分布式计算 DataWorks
如何让DataWorks调度依赖一个非DataWorks的任务结点,如数据上传任务?
如何让DataWorks调度依赖一个非DataWorks的任务结点,如数据上传任务?创建一个表的空分区,然后通过DataWorks去检查这个分区。
43 7
|
1月前
|
SQL 数据采集 DataWorks
基于DataWorks的多场景实践及数据开发Data Studio最新体验测评
DataWorks是阿里云推出的一站式智能大数据开发治理平台,自2009年发布以来,历经多次迭代,成为企业数字化转型的重要工具。本文通过多个实践案例,如公共电影票房数据预处理,展示了DataWorks如何帮助企业高效处理大数据,涵盖数据集成、ETL开发、数据分析及治理等全流程。最新版DataWorks引入了智能助手Copilot,进一步提升了用户体验和工作效率。
|
2月前
|
SQL 人工智能 DataWorks
DataWorks:新一代 Data+AI 数据开发与数据治理平台演进
本文介绍了阿里云 DataWorks 在 DA 数智大会 2024 上的最新进展,包括新一代智能数据开发平台 DataWorks Data Studio、全新升级的 DataWorks Copilot 智能助手、数据资产治理、全面云原生转型以及更开放的开发者体验。这些更新旨在提升数据开发和治理的效率,助力企业实现数据价值最大化和智能化转型。
|
4月前
|
SQL 机器学习/深度学习 分布式计算
dataworks节点任务
在DataWorks中,你可以通过拖拽节点以及连线来构建复杂的工作流,这样可以方便地管理多个任务之间的依赖关系。此外,DataWorks还提供了调度功能,使得这些任务可以在设定的时间自动执行。这对于构建自动化、定时的数据处理管道非常有用。
93 5
|
5月前
|
SQL DataWorks 安全
DataWorks产品使用合集之如何实现分钟级调度
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
5月前
|
分布式计算 运维 DataWorks
DataWorks产品使用合集之如何实现任务的批量导入和导出
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
8天前
|
DataWorks 监控 数据建模
DataWorks产品体验评测
DataWorks产品体验评测
|
3天前
|
分布式计算 DataWorks 搜索推荐
DataWorks 产品评测与最佳实践探索!
DataWorks 是阿里巴巴推出的一站式智能大数据开发治理平台,内置15年实践经验,集成多种大数据与AI服务。本文通过实际使用角度,探讨其优势、潜力及改进建议。评测涵盖用户画像分析、数据治理、功能表现等方面,适合数字化转型企业参考。
12 1
|
10天前
|
数据采集 机器学习/深度学习 DataWorks
DataWorks产品评测:大数据开发治理的深度体验
DataWorks产品评测:大数据开发治理的深度体验
60 1

热门文章

最新文章