[雪峰磁针石博客]大数据Hadoop工具python教程4-mrjob

简介: mrjob是由Yelp创建的Python MapReduce库,它封装了Hadoop流,允许MapReduce应用程序以更加Pythonic的方式编写。 mrjob用纯Python编写多步MapReduce作业。

mrjob是由Yelp创建的Python MapReduce库,它封装了Hadoop流,允许MapReduce应用程序以更加Pythonic的方式编写。 mrjob用纯Python编写多步MapReduce作业。使用mrjob编写的MapReduce作业可以在本地测试,在Hadoop集群上运行,或使用Amazon Elastic MapReduce(EMR)在云中运行。

使用mrjob编写MapReduce应用程序有许多好处:

  • mrjob目前是非常活跃的框架,每周都有多次提交。
  • mrjob拥有丰富的文档。
  • 可以在不安装Hadoop的情况下执行和测试mrjob应用程序,在部署到Hadoop集群之前就可开发和测试。
  • mrjob允许MapReduce应用程序在单个类中编写,而不是为mapper和reducer编写单独的程序。

虽然mrjob是很好的解决方案,但它确实有它的缺点。 mrjob是简化的,因此它不会提供与其他API提供的Hadoop相同级别的访问权限。 mrjob不使用typedbytes,因此其他库可能更快。

安装

$ pip install mrjob

参考资料

 单词统计

#!/usr/bin/env python
# 项目实战讨论QQ群630011153 144081101
# https://github.com/china-testing/python-api-tesing
from mrjob.job import MRJob

class MRWordCount(MRJob):

   def mapper(self, _, line):
      for word in line.split():
         yield(word, 1)

   def reducer(self, word, counts):
      yield(word, sum(counts))

if __name__ == '__main__':
   MRWordCount.run()

执行结果

$  python word_count.py /home/hduser_/input2.txt 
No configs found; falling back on auto-configuration
No configs specified for inline runner
Running step 1 of 1...
Creating temp directory /tmp/word_count.hduser_.20190122.035729.128110
job output is in /tmp/word_count.hduser_.20190122.035729.128110/output
Streaming final output from /tmp/word_count.hduser_.20190122.035729.128110/output...
"nimble"    1
"be"    2
"quick"    1
"jack"    2
Removing temp directory /tmp/word_count.hduser_.20190122.035729.128110...

比较重要的方法有:mapper()、combiner()和reducer()。

多个输入文件:

$ python mr_job.py input1.txt input2.txt input3.txt

默认情况下,mrjob在本地运行,允许在提交到Hadoop集群之前开发和调试代码。
要更改作业的运行方式,请指定-r/--runner选项。

图片.png

$ python mr_job.py -r hadoop hdfs://input/input.txt
$ python mr_job.py -r emr s3://input-bucket/input.txt
相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
3月前
|
存储 缓存 测试技术
理解Python装饰器:简化代码的强大工具
理解Python装饰器:简化代码的强大工具
|
4月前
|
程序员 测试技术 开发者
Python装饰器:简化代码的强大工具
Python装饰器:简化代码的强大工具
230 92
|
3月前
|
机器学习/深度学习 编解码 Python
Python图片上采样工具 - RealESRGANer
Real-ESRGAN基于深度学习实现图像超分辨率放大,有效改善传统PIL缩放的模糊问题。支持多种模型版本,推荐使用魔搭社区提供的预训练模型,适用于将小图高质量放大至大图,放大倍率越低效果越佳。
292 3
|
4月前
|
人工智能 自然语言处理 安全
Python构建MCP服务器:从工具封装到AI集成的全流程实践
MCP协议为AI提供标准化工具调用接口,助力模型高效操作现实世界。
882 1
|
3月前
|
算法 安全 数据安全/隐私保护
Python随机数函数全解析:5个核心工具的实战指南
Python的random模块不仅包含基础的随机数生成函数,还提供了如randint()、choice()、shuffle()和sample()等实用工具,适用于游戏开发、密码学、统计模拟等多个领域。本文深入解析这些函数的用法、底层原理及最佳实践,帮助开发者高效利用随机数,提升代码质量与安全性。
747 0
|
3月前
|
机器学习/深度学习 传感器 分布式计算
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
300 14
|
5月前
|
数据采集 分布式计算 DataWorks
ODPS在某公共数据项目上的实践
本项目基于公共数据定义及ODPS与DataWorks技术,构建一体化智能化数据平台,涵盖数据目录、归集、治理、共享与开放六大目标。通过十大子系统实现全流程管理,强化数据安全与流通,提升业务效率与决策能力,助力数字化改革。
206 4
|
4月前
|
机器学习/深度学习 运维 监控
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
180 0
|
3月前
|
传感器 人工智能 监控
数据下田,庄稼不“瞎种”——聊聊大数据如何帮农业提效
数据下田,庄稼不“瞎种”——聊聊大数据如何帮农业提效
158 14
|
2月前
|
传感器 人工智能 监控
拔俗多模态跨尺度大数据AI分析平台:让复杂数据“开口说话”的智能引擎
在数字化时代,多模态跨尺度大数据AI分析平台应运而生,打破数据孤岛,融合图像、文本、视频等多源信息,贯通微观与宏观尺度,实现智能诊断、预测与决策,广泛应用于医疗、制造、金融等领域,推动AI从“看懂”到“会思考”的跃迁。

推荐镜像

更多