基于Java的Hadoop文件处理系统:高效分布式数据解析与存储

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云解析 DNS,旗舰版 1个月
简介: 本文介绍了如何借鉴Hadoop的设计思想,使用Java实现其核心功能MapReduce,解决海量数据处理问题。通过类比图书馆管理系统,详细解释了Hadoop的两大组件:HDFS(分布式文件系统)和MapReduce(分布式计算模型)。具体实现了单词统计任务,并扩展支持CSV和JSON格式的数据解析。为了提升性能,引入了Combiner减少中间数据传输,以及自定义Partitioner解决数据倾斜问题。最后总结了Hadoop在大数据处理中的重要性,鼓励Java开发者学习Hadoop以拓展技术边界。

引子

随着移动互联网时代的到来,大数据时代 也随之而至。无数的信息流与数据流在各种系统和设备中涌动,如何高效地存储与处理这些海量数据,成为了当今技术领域的一大挑战。作为Apache旗下的分布式存储与计算框架,Hadoop 一直在大数据处理领域占有重要地位,凭借其强大的扩展性和可靠性,广泛应用于各类大规模数据处理任务。

本文将借鉴Hadoop的设计思想,使用Java实现其一大核心功能:MapReduce(分布式计算模型),以此展示如何通过并行计算解决海量数据处理问题。

认识Hadoop

既然是要借鉴设计,自然也就需要我们先对Hadoop来细细地“盘”一下,毕竟工欲善其事必先利其器。那么,就让我来用很多人都做过的图书管理系统来帮大家梳理一下。

1.Hadoop本身:图书馆管理系统

想象你是一家超大型图书馆的馆长,这个图书馆有成千上万的书籍Hadoop就是一个强大的管理系统,可以帮助你有效地存储管理处理这些书籍的信息。
01.png
那么作为管理这些图书的Hadoop此时就面临着两个关键问题需要解决:

  • 如何存储大量书籍(相当于海量数据)
  • 如何快速找到、处理这些书籍的信息(相当于对数据进行计算和分析)。

为了实现这两个目标,Hadoop就引入了HDFSMapReduce,它们分别负责存储和处理数据。

2.HDFS:图书馆的书架和仓库系统

HDFS(Hadoop Distributed File System)负责数据存储,就像图书馆中的书架和仓库系统,负责存储所有的书籍。
02.png
它的存储方式结合图书馆具有以下几个特点:

  • 分布式存储:图书馆的书架并不是集中在一个房间里,而是分布在多个房间(节点)中,每个房间只存储一部分书籍。类似地,HDFS 会将文件切分为多个数据块,分别存储在不同的节点上。
  • 数据块与分片存储:如果某本书非常厚,图书馆会将它 分成多个部分(数据块),分别存放在不同的房间(节点)中。这样可以加快数据的并行读取,同时避免单个节点的存储压力。HDFS 采用相同的策略,将大文件切分为多个块存储在不同的机器上。
  • 冗余备份与容错性:为了避免某个房间的书架损坏(节点故障)导致书籍丢失,图书馆会将重要的书籍(数据块)复制多份,并存储在不同的房间中。这样,即使某个节点出现故障,仍然可以从其他节点恢复数据。
  • 数据管理者:NameNode 与 DataNode

    1.NameNode:相当于图书馆的馆长,负责管理所有书籍的目录和位置信息。馆长不会亲自存储书籍,但他知道每本书在哪个房间的哪个书架上(即元数据)。

    2.DataNode就像是图书馆中的房间管理员,负责实际存储书籍(数据块)。每个房间的管理员只知道自己管理的书籍,而不关心其他房间的情况。

3.MapReduce:图书馆的任务分配系统

在图书馆的管理系统中,除了需要分布式存储书籍外,还需要对这些书籍进行查询、统计和分析工作。为了高效处理这些任务,图书馆采用了MapReduce来对任务进行分配。这个系统通过将任务拆分为多个步骤,并行分配给不同的管理员(节点),从而加快任务的执行速度。
03.png
MapReduce主要分为两个阶段:Map阶段Reduce阶段

3-1.Map阶段(映射阶段)

假设你想知道图书馆里每本书的借阅次数。图书馆不会让一个管理员去统计所有书籍的借阅信息,而是将统计任务分配给多个房间的管理员。每个管理员只负责统计自己房间内的书籍借阅情况,并生成一个中间结果。这就是 Map阶段:每个节点负责处理自己存储的数据,生成键值对结果。

对应到实际的Hadoop系统中,Map阶段会将大规模的数据集分成多个小块,由不同的节点并行处理。每个节点负责处理自己的一部分数据,并输出中间的键值对结果。

3-2.Reduce阶段(归约阶段)

当每个房间的管理员将统计结果交给馆长后,馆长会将这些结果汇总,得到整个图书馆的借阅统计信息。这就是 Reduce 阶段:汇总Map阶段生成的键值对,得到最终的统计结果。

在 Hadoop 中,Reduce 阶段会接收来自多个Map任务的中间结果,并对这些结果进行汇总或聚合,最终生成用户所需要的输出结果。

3-3.并行与容错

每个房间的管理员可以同时统计各自房间书籍的数量,如果某个房间管理员今天请假了没来,馆长也会为这个房间指定一个临时管理员来接手任务。

MapReduce的最大优势在于它的并行处理能力。由于每个节点可以独立地处理自己的一部分数据,整个任务可以被拆分为多个小任务并行执行,这极大提高了任务的处理速度。此外,若某个节点在执行任务时发生故障,MapReduce系统能够自动重新分配任务,确保整个作业的顺利完成。

而这些也是我们今天需要实现的点。

技术实现

Hadoop在本地安装后,可以以两种模式运行,分别是本地模式和伪分布式模式。在本地模式下,它会在单个 JVM 实例中运行,不依赖于 HDFS、YARN 或 MapReduce。所有的计算都在本地机器的文件系统上进行。因此,更适合我们此时的快速开发和测试。当然,别忘了引入相关依赖:

<dependencies>
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-common</artifactId>
        <version>3.3.6</version>
    </dependency>
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-mapreduce-client-core</artifactId>
        <version>3.3.6</version>
    </dependency>
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-mapreduce-client-app</artifactId>
        <version>3.3.6</version>
    </dependency>
</dependencies>

实现MapReduce任务

首先,我们先通过Java实现一个简单的任务-统计一段文本中的单词出现次数。首先先来实现map接口,还记得我们前面提到的map阶段是各个节点处理自己的数据。在当前的任务下,就是对文本进行分词统计即可,代码如下:

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
   
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
   
        String[] words = value.toString().split("\s+");
        for (String w : words) {
   
            word.set(w);
            context.write(word, one);
        }
    }
}

map实现后,我们接下来继续reduce阶段,来汇总Mapper产生的中间结果,将相同单词的频次加起来。

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
   
    private IntWritable result = new IntWritable();

    @Override
    protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
   
        int sum = 0;
        for (IntWritable val : values) {
   
            sum += val.get();
        }
        result.set(sum);
        context.write(key, result);
    }
}

最后是编写我们的任务入口,负责配置并提交MapReduce作业

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCountJob {
   
    public static void main(String[] args) throws Exception {
   
        if (args.length != 2) {
   
            System.err.println("Usage: WordCountJob <input path> <output path>");
            System.exit(-1);
        }

        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf, "Word Count");

        job.setJarByClass(WordCountJob.class);
        job.setMapperClass(WordCountMapper.class);
        job.setReducerClass(WordCountReducer.class);

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

我们准备一个txt文本,用我们的作业简单测试下效果,如下:
04.png

运行计数作业后,输出结果如下:
05.png
可以看到,我们这个简单的MapReduce任务就实现了。

更多的格式支持

在上面的例子里,我们用一个txt文本进行了测试。但在实际业务场景中,我们可能遇到更多形式的数据,因此,就需要我们在解析时能够支持多种数据格式,这里我们先以CSVJSON为例,为了处理它们,我们先导入相关依赖,如下:

 <!-- Apache Commons CSV -->
    <dependency>
        <groupId>org.apache.commons</groupId>
        <artifactId>commons-csv</artifactId>
        <version>1.9.0</version>
    </dependency>

    <!-- Jackson (用于解析JSON) -->
    <dependency>
        <groupId>com.fasterxml.jackson.core</groupId>
        <artifactId>jackson-databind</artifactId>
        <version>2.14.0</version>
    </dependency>

有了依赖的加持,我们可以通过便捷的api实现对csv和json数据的解析,把它们集成到map阶段,代码如下:

import org.apache.commons.csv.CSVFormat;
import org.apache.commons.csv.CSVParser;
import org.apache.commons.csv.CSVRecord;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;
import java.io.StringReader;

public class CSVWordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
   
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
   
        // 使用Apache Commons CSV解析输入行
        String line = value.toString();
        CSVParser parser = CSVFormat.DEFAULT.parse(new StringReader(line));

        for (CSVRecord record : parser) {
   
            for (String field : record) {
   
                word.set(field.trim());
                context.write(word, one);
            }
        }
    }
}
import com.fasterxml.jackson.databind.JsonNode;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

public class JSONWordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
   
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();
    private ObjectMapper objectMapper = new ObjectMapper();

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
   
        // 使用Jackson解析JSON
        String jsonString = value.toString();
        JsonNode jsonNode = objectMapper.readTree(jsonString);

        // 假设我们要处理的字段是 "text"
        String text = jsonNode.get("text").asText();
        String[] words = text.split("\s+");

        for (String w : words) {
   
            word.set(w.trim());
            context.write(word, one);
        }
    }
}

但这里我们这里需要考虑扩展性,以后有更多格式的数据,需要怎么办?来吧,掏出我们的工厂模式,先创建一个通用工厂,如下:

public class MapperFactory {
   
    public static Class<? extends Mapper> getMapperClass(String format) {
   
        switch (format.toLowerCase()) {
   
            case "csv":
                return CSVWordCountMapper.class;
            case "json":
                return JSONWordCountMapper.class;
            default:
                return WordCountMapper.class; // 默认文本文件格式
        }
    }
}

然后再修改WordCountJob 来动态选择 Mapper,可以通过命令行参数或者配置文件来动态选择,代码如下:

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCountJob {
   
    public static void main(String[] args) throws Exception {
   
        if (args.length != 3) {
   
            System.err.println("Usage: WordCountJob <input path> <output path> <format: text|csv|json>");
            System.exit(-1);
        }

        String inputPath = args[0];
        String outputPath = args[1];
        String format = args[2];  // 获取输入格式

        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf, "Word Count");

        job.setJarByClass(WordCountJob.class);

        // 根据输入格式动态设置Mapper
        job.setMapperClass(MapperFactory.getMapperClass(format));

        job.setReducerClass(WordCountReducer.class);

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        FileInputFormat.addInputPath(job, new Path(inputPath));
        FileOutputFormat.setOutputPath(job, new Path(outputPath));

        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

这样,以后再有新的格式也就可以轻松扩展了。

性能调优

能够完成基本任务是远远不够的,现在我们就需要考虑性能优化。关于它的调优是一个多维度的过程,核心目标就是最大化利用集群资源,减少网络传输和I/O操作,确保任务在大规模数据环境下高效运行。 比如,合理配置Mapper和Reducer的数量使用Combiner减少数据传输调整Shuffle阶段的参数等等。我们这里就不泛泛而谈了,围绕我们上面的代码讲两个优化思路。

减少中间数据传输

Combiner可以在Mapper端对数据进行局部汇总,减少传递给Reducer的中间数据量。我们当前的单词统计任务就很适合用Combiner,如下:

job.setCombinerClass(WordCountReducer.class);  // 将Reducer类作为Combiner

这样,Mapper输出的数据会局部汇总后再传给Reducer,显著减少网络传输量,尤其是在处理大量数据时提升更为明显。

数据倾斜问题调优

对于单词统计任务,可能一个文本里某些单词出现的频率远高于其他单词,这样就可能导致某些Reducer的负载过重,也就是我们说的数据倾斜。它会导致某些Reducer接收到的数据远多于其他Reducer,进而导致整个作业的执行时间拖长。对于这个问题,我们的解决策略就是自定义 Partitioner 来更均匀地分配数据,代码如下:

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;

public class CustomPartitioner extends Partitioner<Text, IntWritable> {
   
    @Override
    public int getPartition(Text key, IntWritable value, int numReduceTasks) {
   
        // 根据单词的首字母来进行分区
        char firstChar = key.toString().toLowerCase().charAt(0);
        if (firstChar >= 'a' && firstChar <= 'm') {
   
            return 0;  // 分配给Reducer 0
        } else {
   
            return 1;  // 分配给Reducer 1
        }
    }
}

然后,在作业中设置自定义 Partitioner,代码如下:

job.setPartitionerClass(CustomPartitioner.class);  // 使用自定义Partitioner

这种方式可以避免某些高频单词集中在同一个Reducer,导致的数据倾斜。

小结

本篇文章主要讲述如何实现一个基础的MapReduce作业,对于输入的数据的扩展性与任务性能调优也实现了一些方法,但在实际业务场景中,肯定远不止这些,更多时候需要结合实际去优化。目前在大数据领域,Hadoop仍然是一个重要的工具,对于Java程序员来说,如果有意扩展自己的边界向大数据领域发展,Hadoop还是很值得我们去学习的。

目录
相关文章
|
2月前
|
监控 Java API
如何使用Java语言快速开发一套智慧工地系统
使用Java开发智慧工地系统,采用Spring Cloud微服务架构和前后端分离设计,结合MySQL、MongoDB数据库及RESTful API,集成人脸识别、视频监控、设备与环境监测等功能模块,运用Spark/Flink处理大数据,ECharts/AntV G2实现数据可视化,确保系统安全与性能,采用敏捷开发模式,提供详尽文档与用户培训,支持云部署与容器化管理,快速构建高效、灵活的智慧工地解决方案。
|
1月前
|
存储 Java
Java 11 的String是如何优化存储的?
本文介绍了Java中字符串存储优化的原理和实现。通过判断字符串是否全为拉丁字符,使用`byte`代替`char`存储,以节省空间。具体实现涉及`compress`和`toBytes`方法,前者用于尝试压缩字符串,后者则按常规方式存储。代码示例展示了如何根据配置决定使用哪种存储方式。
|
2月前
|
设计模式 消息中间件 搜索推荐
Java 设计模式——观察者模式:从优衣库不使用新疆棉事件看系统的动态响应
【11月更文挑战第17天】观察者模式是一种行为设计模式,定义了一对多的依赖关系,使多个观察者对象能直接监听并响应某一主题对象的状态变化。本文介绍了观察者模式的基本概念、商业系统中的应用实例,如优衣库事件中各相关方的动态响应,以及模式的优势和实际系统设计中的应用建议,包括事件驱动架构和消息队列的使用。
|
2月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
104 2
|
3月前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
90 0
|
3月前
|
算法 Java 容器
Map - HashSet & HashMap 源码解析
Map - HashSet & HashMap 源码解析
69 0
|
3月前
|
存储 Java C++
Collection-PriorityQueue源码解析
Collection-PriorityQueue源码解析
76 0
|
3月前
|
安全 Java 程序员
Collection-Stack&Queue源码解析
Collection-Stack&Queue源码解析
101 0
|
22天前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
|
22天前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
结构型模式描述如何将类或对象按某种布局组成更大的结构。它分为类结构型模式和对象结构型模式,前者采用继承机制来组织接口和类,后者釆用组合或聚合来组合对象。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象结构型模式比类结构型模式具有更大的灵活性。 结构型模式分为以下 7 种: • 代理模式 • 适配器模式 • 装饰者模式 • 桥接模式 • 外观模式 • 组合模式 • 享元模式
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析

推荐镜像

更多