计算机操作原理进程调度算法---先来先服务,短进程优先(C语言)

简介:  目录先来先服务调度算法:短进程优先调度算法:两种进程调度算法优缺点思维导图程序代码: 先来先服务调度算法:先来先服务(FCFS)调度算法是一种最简单的调度算法,该算法既可用于作业调度,也可用于进程调度。

 

目录

先来先服务调度算法:

短进程优先调度算法:

两种进程调度算法优缺点

思维导图

程序代码: 


先来先服务调度算法

先来先服务(FCFS)调度算法是一种最简单的调度算法,该算法既可用于作业调度,也可用于进程调度。当在作业调度中采用该算法时,每次调度都是从后备作业队列中选择一个或多个最先进入该队列的作业,将它们调入内存,为它们分配资源、创建进程,然后放入就绪队列。在进程调度中采用FCFS算法时,则每次调度是从就绪队列中选择一个最先进入该队列的进程,为之分配处理机,使之投入运行。该进程一直运行到完成或发生某事件而阻塞后才放弃处理机。

 

短进程优先调度算法:

短作业(进程)优先调度算法SJ(P)F,是指对短作业或短进程优先调度的算法。它们可以分别用于作业调度和进程调度。短作业优先(SJF)的调度算法是从后备队列中选择一个或若干个估计运行时间最短的作业,将它们调入内存运行。而短进程优先(SPF)调度算法则是从就绪队列中选出一个估计运行时间最短的进程,将处理机分配给它,使它立即执行并一直执行到完成,或发生某事件而被阻塞放弃处理机时再重新调度。

两种进程调度算法优缺点

 

优点

缺点

先来先服务调度算法

  1. 公平,实现简单,有利于长进程调度
  2. 有利与CPU繁忙型进程,用于批处理系统
  1. 不考虑等待时间和执行时间,会产生饥饿现象,不利于处理短进程调度。
  2. 不利于I/O繁忙型进程,不适于分时系统。

短进程优先调度算法

  1. 有利于短进程调度
  2. 对预计执行时间短的进程有限分配处理机,通常后来的短进程不会抢先正在执行的进程
  1. 完全未考虑作业(进程)的紧迫程度,因而不能保证紧迫性作业(进程)会被及时处理。
  2. 不利于长进程调度

思维导图

程序代码: 



/*
实验题目:先来先服务FCFS和短作业优先SJF进程调度算法

*******实验要求*********
1. 先来先服务调度算法FCFS:
	1)是一种最简单的调度算法,适用于作业调度和进程调度
	2)每次调度都是从后备队列中选择一个或者多个最先进入该队列的作业,将它们调入内存,分配资源,创建进程,然后放入就绪队列
	3)FCFS算法比较有利于长作业(进程),不利于短作业(进程)
	4)既可用于作业调度,也可用于进程调度
2. 周转时间 = 完成时间 - 到达时间
   带权周转时间 = 周转时间/服务时间
*/
#include<stdio.h>
#include <stdlib.h>  //malloc的头文件
#include <time.h>
#include <math.h>

struct node {     //进程控制块
	char name;
	double arr;   //到达时间
	double ing;   //服务时间
	double finish;//结束时间
	double round; //周转时间
	double daiquan;//带权周转时间
	double pingjunround; //平均周转时间
	double pingjundaiquan; //平均带权周转时间
}ai[100];
node t;

void FCFS()
{
	int n,i;

	printf("请输入进程个数:\n");
	scanf("%d", &n);
	printf("请输入%d个进程的名字\n", n);
	for (i = 0;i<n;i++)
	{
		getchar();
		scanf("%s",&ai[i].name);	
		ai[i].arr = (double)(rand()%10 + 1);  //随机
		ai[i].ing = (double)(rand()%10 + 1);  //随机
		 
	}
	//排序
	for (i = 1; i < n; i++)
	{
		for (int j = 0; j < n - i; j++)
		{
			if (ai[j].arr > ai[j + 1].arr)
			{
				t = ai[j];
				ai[j] = ai[j + 1];
				ai[j + 1] = t;
			}			
		}
	} 
	printf("进程名 \t到达时间\t服务时间\t结束时间\t周转时间\t平均周转时间\t带权周转时间\t平均带权周转时间\n");
	ai[0].finish =ai[0].arr+ai[0].ing;
	ai[0].round=ai[0].finish-ai[0].arr;
	ai[0].daiquan=ai[0].round/ai[0].ing;
	ai[0].pingjunround=ai[0].round;
	ai[0].pingjundaiquan=ai[0].daiquan;
	printf("%c    \t%.2lf \t\t%.2lf \t\t%.2lf \t\t%.2lf \t\t%.2lf \t\t%.2lf     \t\t%.2lf\n",ai[0].name,ai[0].arr,ai[0].ing,ai[0].finish,ai[0].round,ai[0].pingjunround,ai[0].daiquan,ai[0].pingjundaiquan);
	for (i = 1;i<n;i++)
	{
		ai[i].finish = ai[i-1].finish + ai[i].ing;
		ai[i].round = ai[i].finish - ai[i].arr;
		ai[i].daiquan = ai[i].round / ai[i].ing;
		ai[i].pingjunround=(ai[i].round+ai[i-1].round)/(double)(i+1);
		ai[i].pingjundaiquan=(ai[i].daiquan+ai[i-1].daiquan)/(double)(i+1);
		printf("%c    \t%.2lf \t\t%.2lf \t\t%.2lf \t\t%.2lf \t\t%.2lf \t\t%.2lf     \t\t%.2lf\n",ai[i].name,ai[i].arr,ai[i].ing,ai[i].finish,ai[i].round,ai[i].pingjunround,ai[i].daiquan,ai[i].pingjundaiquan);
	}
}
 
void SPF()
{
	int n,i,time=0;

	printf("请输入进程个数:\n");
	scanf("%d", &n);
	printf("请输入%d个进程的名字\n", n);
	for (i = 0;i<n;i++)
	{
		getchar();
		scanf("%s",&ai[i].name);	
		ai[i].arr = (double)(rand()%10 + 1);
		ai[i].ing = (double)(rand()%10 + 1);		
	}

	for ( i = 1; i<n; i++)
	{
		for (int j = 0; j<n - i; j++)
		{
			if (ai[j].arr>ai[j + 1].arr)//将到达时间短的交换到前边
			{
				t = ai[j];
				ai[j] = ai[j + 1];
				ai[j + 1] = t;
			}
		}
		for (int k = 0; k < n - i; k++)
		{
			if ((ai[k].ing > ai[k + 1].ing) && (ai[k].arr >= ai[k + 1].arr))//将服务时间短的交换到前边
			{
				t = ai[k];
				ai[k] = ai[k + 1];
				ai[k + 1] = t;
			}
		}
	}

	printf("进程名 \t到达时间\t服务时间\t结束时间\t周转时间\t平均周转时间\t带权周转时间\t平均带权周转时间\n");
	ai[0].finish =ai[0].arr+ai[0].ing;
	ai[0].round=ai[0].finish-ai[0].arr;
	ai[0].daiquan=ai[0].round/ai[0].ing;
	ai[0].pingjunround=ai[0].round;
	ai[0].pingjundaiquan=ai[0].daiquan;
	printf("%c    \t%.2lf \t\t%.2lf \t\t%.2lf \t\t%.2lf \t\t%.2lf \t\t%.2lf     \t\t%.2lf\n",ai[0].name,ai[0].arr,ai[0].ing,ai[0].finish,ai[0].round,ai[0].pingjunround,ai[0].daiquan,ai[0].pingjundaiquan);
	

	for (i = 1; i < n; i++)  	//排序
	{

		for (int j = i; j < n - 1; j++)
		{
			for (int d = i + 1; d<n; d++)
				if ((ai[i - 1].finish >= ai[j].arr) && (ai[i - 1].finish >= ai[d].arr) && (ai[j].ing > ai[d].ing))
				{
					t = ai[j];
					ai[j] = ai[d];
					ai[d] = t;
				}
		}

		if (ai[i].arr<ai[i - 1].finish)	//当前到达时间在上一个作业结束时间之前
		{
			ai[i].finish = ai[i - 1].finish + ai[i].ing;
			ai[i].round = ai[i].finish - ai[i].arr;		
			ai[i].daiquan = ai[i].round / ai[i].ing;	
			ai[i].pingjunround=(ai[i].round+ai[i-1].round)/(double)(i+1);
			ai[i].pingjundaiquan=(ai[i].daiquan+ai[i-1].daiquan)/(double)(i+1);
		}
		else	//当前到达时间在上一个作业结束时间之后
		{
			ai[i].finish = ai[i].arr + ai[i].ing;
			ai[i].round = ai[i].finish - ai[i].arr;
			ai[i].daiquan = ai[i].round / ai[i].ing;
			ai[i].pingjunround=(ai[i].round+ai[i-1].round)/(double)(i+1);
			ai[i].pingjundaiquan=(ai[i].daiquan+ai[i-1].daiquan)/(double)(i+1);
		}

	}
	
	for (i = 1;i<n;i++)
	{
		printf("%c    \t%.2lf \t\t%.2lf \t\t%.2lf \t\t%.2lf \t\t%.2lf \t\t%.2lf     \t\t%.2lf\n",ai[i].name,ai[i].arr,ai[i].ing,ai[i].finish,ai[i].round,ai[i].pingjunround,ai[i].daiquan,ai[i].pingjundaiquan);
	}  
	
}
  
int main()
{
	srand( (unsigned)time( NULL ) );   //随机
	printf("请选择算法“1-FCFS,2-SPF”\n");
	int choose;
	scanf("%d",&choose);
	if(choose==1){ FCFS(); }
	else if(choose==2) { SPF(); }
	return 0;
}

 

目录
相关文章
|
2天前
|
机器学习/深度学习 算法 TensorFlow
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
动物识别系统。本项目以Python作为主要编程语言,并基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集4种常见的动物图像数据集(猫、狗、鸡、马)然后进行模型训练,得到一个识别精度较高的模型文件,然后保存为本地格式的H5格式文件。再基于Django开发Web网页端操作界面,实现用户上传一张动物图片,识别其名称。
17 1
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
|
1天前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
27 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
1天前
|
监控 算法 程序员
探索操作系统的核心:进程管理与调度
【9月更文挑战第19天】本文深入浅出地探讨了操作系统中至关重要的一环——进程管理与调度。通过直观的语言和生动的案例,我们将了解进程是什么,它们如何被操作系统所管理,以及调度算法对系统性能的影响。文章旨在为读者揭示操作系统背后的秘密,同时提供实用的代码示例来加深理解。无论你是计算机专业的学生还是对操作系统有兴趣的程序员,这篇文章都将为你打开新世界的大门。
|
9天前
|
算法 人机交互 调度
进程调度算法_轮转调度算法_优先级调度算法_多级反馈队列调度算法
轮转调度算法(RR)是一种常用且简单的调度方法,通过给每个进程分配一小段CPU运行时间来轮流执行。进程切换发生在当前进程完成或时间片用尽时。优先级调度算法则根据进程的紧迫性赋予不同优先级,高优先级进程优先执行,并分为抢占式和非抢占式。多队列调度算法通过设置多个具有不同优先级的就绪队列,采用多级反馈队列优先调度机制,以满足不同类型用户的需求,从而优化整体调度性能。
28 15
|
3天前
|
算法 调度 Python
探索操作系统的内核——一个简单的进程调度示例
【9月更文挑战第17天】在这篇文章中,我们将深入探讨操作系统的核心组件之一——进程调度。通过一个简化版的代码示例,我们将了解进程调度的基本概念、目的和实现方式。无论你是初学者还是有一定基础的学习者,这篇文章都将帮助你更好地理解操作系统中进程调度的原理和实践。
|
6天前
|
算法 调度 Python
深入理解操作系统:进程管理与调度
【9月更文挑战第14天】操作系统是计算机系统的核心,负责管理和控制计算机硬件资源,并提供用户和应用程序所需的服务。本文将介绍操作系统中进程管理与调度的基本概念、原理和实现方法,并通过代码示例进行说明。通过阅读本文,读者可以深入了解操作系统的工作原理和机制,提高对计算机系统的理解和掌握能力。
|
2天前
|
算法 调度 开发者
深入理解操作系统的进程调度策略
【9月更文挑战第18天】本文将通过浅显易懂的方式,带你深入了解和掌握操作系统中一个至关重要的概念——进程调度。我们将从基础概念出发,逐步探讨进程调度的策略、算法及其在操作系统中的实现方式。无论你是初学者还是有一定基础的开发者,这篇文章都将为你打开一扇通往操作系统深层知识的大门,让你对进程调度有更深刻的理解和认识。
13 3
|
2天前
|
机器学习/深度学习 存储 人工智能
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
使用Python作为开发语言,基于文本数据集(一个积极的xls文本格式和一个消极的xls文本格式文件),使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于Django框架开发网页平台实现对用户的可视化操作和数据存储。
12 0
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
|
7天前
|
算法 调度 UED
深入理解操作系统:进程管理与调度策略
【9月更文挑战第13天】操作系统是计算机科学的核心领域之一,它负责管理和控制计算机的硬件资源,提供软件运行的环境。在众多操作系统的功能中,进程管理是其核心组成部分,涉及到进程的创建、执行、同步和通信等方面。本文将探讨进程管理的基本概念,并深入分析不同的进程调度算法,以及它们如何影响系统性能和用户体验。通过理论阐述与实际应用的结合,我们旨在为读者提供对操作系统进程调度机制的全面理解,同时辅以代码示例,增强内容的实用性和互动性。
18 4
|
8天前
|
算法 调度 云计算
深入理解操作系统的进程调度
【9月更文挑战第12天】本文旨在探索操作系统中一个关键组件——进程调度器,其设计哲学和实现方式直接影响系统性能与用户体验。我们将从基础概念出发,逐步剖析进程调度的目标、策略以及面临的挑战,并以实际代码示例具体演示如何实现一个简单的进程调度算法。通过本文,读者将获得对操作系统进程调度机制的深刻理解和实际应用能力。
15 4