Google 小程序「猜画小歌」背后的 AI 技术和原理浅析

简介: Google 小程序「猜画小歌」背后的 AI 技术和原理浅析

image

我相信大家的微信朋友圈估计都被 Google 刚刚上线的微信小程序「猜画小歌」刷屏了,之所以被刷屏,不仅仅是因为它有趣好玩,而是因为 Google 基于 AI 技术来识别大家的神作,很多人都不敢相信,我画成这样,竟然都认识,各种灵魂画手一个个的诞生了,基于 AI 的有趣,好玩,让你们兴趣盎然,各种调侃,这是它火爆的一个原因。

今天我想通过这款 Google 推出的微信小程序「猜画小歌」,来聊一聊它背后的机器学习的相关知识,我个人仅仅只是读过关于机器学习的资料和书,浅尝辄止,我不是专门搞机器学习和人工智能的,所以只算是浅析和谈自己的看法。

机器学习原理

要聊到机器学习,我们应该知道,它主要有两种方法:监督式学习(Supervised Learning)和无监督式学习(Unsupervised Learning)。

什么是监督式学习

所谓监督式学习,就是需要我们提供大量的学习样本,包括样本相关的特征数据以及相应的标签。AI 程序可以通过这些样本来学习相关的规律或是模式,然后通过得到的规律或模式来判断没有被打过标签的数据是什么样的数据。

就比如:「猜画小歌」,我们小程序的用户画了大量的带着标签的画作,通过你画的每个带着标签的画作,AI 程序就知道,原来人类是这么画这个房子,这个船,这个苹果等等这些东西的。原来人类眼中的他们是这样的。它就会分析我们画作的每一个特点和特征,从而进行自我学习。我们提供这些大量的带着标签的数据样本也叫:训练数据(training data) 。

通过机器学习的算法,找到每幅画作在不同手写体下的特征,进而找到规律和模式。然后通过得到的规律或模式来识别那些没有被打过标签的画,以此完成识别手写画作的目标。

当然,这个 AI 小程序在上线之前,肯定已经用上万甚至几十万的样本训练过了,所以你在画的时候,它会根据你画的特征进行一些分析和识别。而我们画的这些又被它当做样本,通过算法进行了自我学习。

其实说白了,Google 挺聪明的,让 AI 小程序识别和猜测人类的画作,通过大量我们提供的免费标注训练让这个系统得到更好的学习,提升和优化。其实最后的目的可能就是:AI 智能小程序就会自己独立创作绘画,画出各种跟人类一样的作品。

所以啊,大家都是在玩的同时,在给这个 AI 小程序当陪练呢!!!我每个用户都为它的进化提供了大量的帮助和数据。大家画的越多,提供的数据样本就越多,它通过自我学习和算法分析,就会识别越准确,自己也就越了解人类。

什么是无监督式学习?

无监督式学习 (Unsupervised Learning) 是人工智能网络的一种算法 (algorithm),其目的是去对原始资料进行分类,以便了解资料内部结构。有别于监督式学习网络,无监督式学习网络在学习时并不知道其分类结果是否正确,亦即没有受到监督式增强 (告诉它何种学习是正确的)。其特点是仅对此种网络提供输入范例,而它会自动从这些范例中找出其潜在类别规则。当学习完毕并经测试后,也可以将之应用到新的案例上。

无监督学习里典型的例子就是聚类了。聚类的目的在于把相似的东西聚在一起,而我们并不关心这一类是什么。因此,一个聚类算法通常只需要知道如何计算相似度就可以开始工作了。

可能还会有什么半监督式学习,这个就是上述两者的结合,基本思想是利用数据分布上的模型假设, 建立学习器对未标签样本进行标签。

「猜画小歌」背后的 AI 技术

「猜画小歌」对我们画作的辨识,其实利用的就是神经网络技术,是基于对大量涂鸦样本的学习。就像,我刚才在上面监督式学习那里所说的。

Google 表示,「猜画小歌」由来自 Google 人工智能的神经网络技术驱动。该网络源全世界范围,超过 5000 万个手绘素描的数据群。机器学习手绘素描后,可以通过粗糙的草图来识别物体。例如一团长着耳朵的墨迹可能是一只熊猫。

而这个小程序利用的技术就是:RNN,也就是递归神经网络。这个技术其实谷歌在之前早就使用了,并不新鲜,在去年 11 月,Google 专门研究人 “Quick, Draw!” 的看图猜物品功能。可以根据你勾勒的几笔猜测三个可能的物品。Google 表示,这个技术是通过模拟人脑在画一个物体时是如何运用线条、形状以及其它绘画要素来进行推断。

我们在这个小程序上开始画作,训练神经网络,让 AI 来理解人们在绘制画作时是在何时起笔、走笔方向、何时停笔的。当经过训练的 RNN 模型接收到人类绘制的画作后,会生成一张类似的新画作。

你以为仅仅如此吗?不是,如果你画的画作不对,有瑕疵,它其实还会纠正呢!在 RNN 模型当中,当用户创作出的灵魂画作,还没有画完时,比如只是画出了人的头,还没有画耳朵,AI仍然能够重构出“正常”的画作来。RNN 模型仍然会继续生成有耳朵,有眼睛的正常人头。

所以,在「猜画小歌」小程序中,你仅仅可能只是画出了一个大致的线条,还没画完的时候,AI 就已经认出你画的是什么东西呢?它读取的是你的起笔,线条,和一些特征数据,就能够快速猜出你画的是什么?而且还能帮你补全和纠正。

你打开小程序,找到「我的画作」点进去,在每一幅画作的下面写着这么一句话:

image

最后,大家来欣赏一下我的灵魂画作吧!如下:

image

原文发布时间为:2018-07-20
本文作者: loonggg
本文来自云栖社区合作伙伴“非著名程序员”,了解相关信息可以关注“非著名程序员

相关文章
|
2月前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
12月14日,由中国软件行业校园招聘与实习公共服务平台携手魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·湖南大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
|
13天前
|
人工智能 达摩院 计算机视觉
SHMT:体验 AI 虚拟化妆!阿里巴巴达摩院推出自监督化妆转移技术
SHMT 是阿里达摩院与武汉理工等机构联合研发的自监督化妆转移技术,支持高效妆容迁移与动态对齐,适用于图像处理、虚拟试妆等多个领域。
49 9
SHMT:体验 AI 虚拟化妆!阿里巴巴达摩院推出自监督化妆转移技术
|
9天前
|
存储 人工智能 安全
AI时代的网络安全:传统技术的落寞与新机遇
在AI时代,网络安全正经历深刻变革。传统技术如多因素身份认证、防火墙和基于密码的系统逐渐失效,难以应对新型攻击。然而,AI带来了新机遇:智能化威胁检测、优化安全流程、生物特征加密及漏洞管理等。AI赋能的安全解决方案大幅提升防护能力,但也面临数据隐私和技能短缺等挑战。企业需制定清晰AI政策,强化人机协作,推动行业持续发展。
40 16
|
18天前
|
人工智能 缓存 Ubuntu
AI+树莓派=阿里P8技术专家。模拟面试、学技术真的太香了 | 手把手教学
本课程由阿里P8技术专家分享,介绍如何使用树莓派和阿里云服务构建AI面试助手。通过模拟面试场景,讲解了Java中`==`与`equals`的区别,并演示了从硬件搭建、语音识别、AI Agent配置到代码实现的完整流程。项目利用树莓派作为核心,结合阿里云的实时语音识别、AI Agent和文字转语音服务,实现了一个能够回答面试问题的智能玩偶。课程展示了AI应用的简易构建过程,适合初学者学习和实践。
76 22
|
15天前
|
人工智能 Java 程序员
通义灵码AI编码助手和AI程序员背后的技术
通义灵码AI编码助手和AI程序员背后的技术,由通义实验室科学家黎槟华分享。内容涵盖三部分:1. 编码助手技术,包括构建优秀AI编码助手及代码生成补全;2. 相关的AI程序员技术,探讨AI程序员的优势、发展情况、评估方法及核心难点;3. 代码智能方向的展望,分析AI在软件开发中的角色转变,从辅助编程到成为开发主力,未来将由AI执行细节任务,开发者负责决策和审核,大幅提升开发效率。
105 12
|
17天前
|
人工智能 搜索推荐
AI视频技术的发展是否会影响原创内容的价值
AI视频技术的发展显著降低了视频制作的门槛与成本,自动完成剪辑、特效添加等繁琐工作,大大缩短创作时间。它提供个性化创意建议,帮助创作者突破传统思维,拓展创意边界。此外,AI技术使更多非专业人士也能参与视频创作,注入新活力与多样性,丰富了原创内容。总体而言,AI视频技术不仅提升了创作效率,还促进了视频内容的创新与多样化。
|
10天前
|
机器学习/深度学习 存储 人工智能
AI实践:智能工单系统的技术逻辑与应用
智能工单系统是企业服务管理的核心工具,通过多渠道接入、自然语言处理等技术,实现工单自动生成、分类和分配。它优化了客户服务流程,提高了效率与透明度,减少了运营成本,提升了客户满意度。系统还依托知识库和机器学习,持续改进处理策略,助力企业在竞争中脱颖而出。
35 5
|
2月前
|
数据采集 人工智能 运维
从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践
本文介绍了阿里云 Elasticsearch 推出的创新型 AI 搜索方案
160 3
从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践
|
14天前
|
机器学习/深度学习 人工智能 编译器
BladeDISC++:Dynamic Shape AI 编译器下的显存优化技术
本文介绍了阿里云 PAI 团队近期发布的 BladeDISC++项目,探讨在动态场景下如何优化深度学习训练任务的显存峰值,主要内容包括以下三个部分:Dynamic Shape 场景下显存优化的背景与挑战;BladeDISC++的创新解决方案;Llama2 模型的实验数据分析
|
14天前
|
存储 人工智能 边缘计算
AI时代下, 边缘云上的技术演进与场景创新
本文介绍了AI时代下边缘云的技术演进与场景创新。主要内容分为三部分:一是边缘云算力形态的多元化演进,强调阿里云边缘节点服务(ENS)在全球600多个节点的部署,提供低时延、本地化和小型化的价值;二是边缘AI推理的创新发展与实践,涵盖低时延、资源广分布、本地化及弹性需求等优势;三是云游戏在边缘承载的技术演进,探讨云游戏对边缘计算的依赖及其技术方案,如多开技术、云存储和网络架构优化,以提升用户体验并降低成本。文章展示了边缘云在未来智能化、实时化解决方案中的重要性。

热门文章

最新文章