Atari联合创始人去世,为什么游戏对AI很重要?

简介: 雅达利(Atari)公司的联合创始人Ted 逝世。“雅达利”这个名字,是人工智能历史上一个不可忽视的关键词。

那个花了250美元创办Atari(雅达利)的人,Ted Dabney,上个月去世了。

Ted Dabney(全名Samuel F. "Ted" Dabney)可能没有与他一起创办雅达利的诺兰·布什内尔(Nolan Bushnell)出名,但当年风靡世界的经典游戏Pong,就是出自Ted Dabney等人之手。

39cd27c7b1e2d52b5508812893f1c32492451ffa

Pong开创了街机视频游戏的历史,也让Atari成为一代游戏的巨人,甚至还吸引了乔布斯等人的加入。

更重要的是,Atari系列游戏不仅丰富了几代人的童年生活,在计算机史上也功不可没:DeepMind已经能够操作49款雅达利游戏,OpenAI强化学习游戏库中也包含了大量的雅达利游戏。

Atari:AI发展史上的关键词

“Atari”是AI发展史上一个不可绕过的关键词。AI达到乃至超越人类水平的领域,最开始便来自雅达利。

Ted Dabney帮助发明的Atari游戏Pong!,是被AI攻克的游戏的常客,你能在网上搜到很多构建玩Pong!的AI的教程。

2013年12月,DeepMind宣布他们研发的AI玩Atari游戏Breakout(见下)超过了人类水平,这是DeepMind取得的首个突破之一。与Pong!类似,Breakout是一款单人的乒乓游戏,也即对着墙打乒乓。在Breakout当中,人类玩家或者AI,用横板(屏幕底部的红色粗线条)左右移动接住球(中间的红点),并用这个球撞击并消除屏幕上方像素构成的“墙”,消除完毕后过关。

a4e2d5fc12778a93f5bb685fe04294ad9eb0e7c8

Breakout,最先被AI攻克的Atari游戏之一

Breakout的动作简单,而且能即时得到反馈,非常适于神经网络,也因此,DeepMind的AI玩Breakout的成绩,是专业人类玩家能达到的最好成绩的十倍以上。

c1d63c3e40817d2c9d823f431097cac8381e0db6

Atari游戏,蒙特祖玛的复仇(montezuma revenge)

而其他游戏就没有那么简单。在另一款Atari游戏“蒙特祖玛的复仇”(见上)中,目标是找到埋在充满危险机关的金字塔里的宝藏。要达到目标,玩家必须达成许多个次级的小目标,例如找到打开门的钥匙。

这个游戏的反馈也不像“Breakout”那么即时,比如在一个地方找到的钥匙,也有可能打开另一个地方的门。最终找到宝藏的奖励,是之前的数千次动作的结果。这意味着网络很难将原因和结果联系起来。与玩“Breakout”的突出表现相反,神经网络目前在“蒙特祖玛的复仇”游戏中进展艰难。

DeepMind的启示:智能应该完全从经验中学习

视频游戏对 AI 的作用并非只是作为现实世界的模拟。不同的游戏需要不同的技能,这一事实有助于研究人员理解智能问题。

不过,这又带来了一个难题——神经网络只能一次玩一个游戏。例如,为了玩“Breakout”,必须要忘掉玩“Pong!”时学会的所有知识。这种遗忘是人工神经网络本身的性质,也是人工神经网络与真正的人类大脑相区别的地方。人工神经网络通过在全系统调整组成它们的虚拟神经元之间连接的强度来学习。一旦改变了要学习的任务,旧的网络连接就会逐渐被重写。

但是,进展也在发生,DeepMind 在2017年3月份发表论文,称已经解决了DNN“灾难性遗忘”的问题,DeepMind研究员让网络就像真正的人类大脑一样,能一次掌握许多个游戏。这是迁移学习——在一个上下文中使用从另一个上下文学会的行为模式的能力——这是 AI 研究中的一个热门话题。

129c44a4e9b72ada9b38d4aa6bda284d3da44b27

DeepMind研究,学习两项任务过程的示意图:使用EWC算法的深层神经网络能够学习玩一个游戏,然后转移它学到的玩一个全新的游戏。

但即便掌握了迁移学习,构建可以用的人工智能仍然是一些零散的活动。研究人员真正希望得到的,是如何系统地进行这些活动的一种基本的理论。这种理论的一个候选,被称为具身认知(embodied cognition)的理论认为,智能应该完全从经验中学习,而不是试图将智能从头开始设计到一个程序里。

现实世界是最大的游戏场

DeepMind 的创始人 Demis Hassabis 认为,重要的事情是得确保虚拟机器人不会作弊。它只能使用虚拟的传感器可以收集到的信息进行导航。如果一个机器人要在“蒙特祖玛的复仇”或者“侠盗猎车手”游戏中学习度过重重危险,它必须得自己弄明白自己在游戏环境里的位置,处理当时“看到”的事情,而不能问运行游戏的计算机它在那个坐标。这是 DeepMind 教程序学习玩游戏采用的方式。

在虚拟世界里的AI可以做很多事情,虚拟机器人是没有重量的,也没有各种部件,因此不需要维护。要改变它的技术参数也不需要拆开它,敲几下键盘就可以了。它的环境也可以轻松改变。一台计算机,一次就可以运行数千个这样的模拟,让大量虚拟机器人一次又一次地尝试任务,每次尝试都是在学习。这是一种大规模的测试,而且允许学习过程被监视和理解,根本就不使用真实的机器。

fe1827a267c5a4bab12d8de952f71aa8934205b9

AI攻克的Atari游戏(部分,列表还在增加中……)

AI攻克的Atari游戏,以及其他视频游戏,还在不断扩展。最后,也是最重要的,视频游戏等虚拟世界,其中所发生的一切,都是现实世界的预演。


原文发布时间为:2018-06-5

本文作者:闻菲、克雷格

本文来自云栖社区合作伙伴新智元,了解相关信息可以关注“AI_era”。

原文链接:Atari联合创始人去世,为什么游戏对AI很重要?

相关文章
|
3月前
|
人工智能 算法 数据库
给AI装上一个'超级大脑':信息检索如何改变RAG系统的游戏规则
从传统检索方法到现代向量检索,通过一个购物助手的故事,直观展示了不同检索技术的原理与应用。学会这些技巧,让你的AI不再是「记忆只有金鱼长度」的大模型!
220 24
|
11月前
|
存储 人工智能 运维
【01】做一个精美的打飞机小游戏,浅尝阿里云通义灵码python小游戏开发AI编程-之飞机大战小游戏上手实践-优雅草央千澈-用ai开发小游戏尝试-分享源代码和游戏包
【01】做一个精美的打飞机小游戏,浅尝阿里云通义灵码python小游戏开发AI编程-之飞机大战小游戏上手实践-优雅草央千澈-用ai开发小游戏尝试-分享源代码和游戏包
606 48
【01】做一个精美的打飞机小游戏,浅尝阿里云通义灵码python小游戏开发AI编程-之飞机大战小游戏上手实践-优雅草央千澈-用ai开发小游戏尝试-分享源代码和游戏包
|
3月前
|
机器学习/深度学习 人工智能 算法
当AI提示词遇见精密算法:TimeGuessr如何用数学魔法打造文化游戏新体验
TimeGuessr融合AI与历史文化,首创时间与空间双维度评分体系,结合分段惩罚、Haversine距离计算与加权算法,辅以连击、速度与完美奖励机制,实现公平且富挑战性的游戏体验。
|
4月前
|
人工智能 JSON 程序员
别再和AI玩文字游戏:JSON提示工程让AI乖乖按表填空
厌倦了和AI玩猜谜游戏吗?JSON提示工程来拯救你!用咖啡订单的方式和AI对话,让每次交互都精准到位,告别模糊不清的回复,迎接可预测的AI输出时代。
|
8月前
|
人工智能 自然语言处理 前端开发
DeepSite:基于DeepSeek的开源AI前端开发神器,一键生成游戏/网页代码
DeepSite是基于DeepSeek-V3模型的在线开发工具,无需配置环境即可通过自然语言描述快速生成游戏、网页和应用代码,并支持实时预览效果,显著降低开发门槛。
1612 93
DeepSite:基于DeepSeek的开源AI前端开发神器,一键生成游戏/网页代码
|
9月前
|
人工智能 开发工具 C++
利用通义灵码AI在VS Code中快速开发扫雷游戏:Qwen2.5-Max模型的应用实例
本文介绍了如何利用阿里云通义灵码AI程序员的Qwen2.5-Max模型,在VS Code中一键生成扫雷小游戏。通过安装通义灵码插件并配置模型,输入指令即可自动生成包含游戏逻辑与UI设计的Python代码。生成的游戏支持难度选择,运行稳定无Bug。实践表明,AI工具显著提升开发效率,但人机协作仍是未来趋势。建议开发者积极拥抱新技术,同时不断提升自身技能以适应行业发展需求。
22657 18
利用通义灵码AI在VS Code中快速开发扫雷游戏:Qwen2.5-Max模型的应用实例
|
存储 人工智能 关系型数据库
拥抱Data+AI|解码Data+AI助力游戏日志智能分析
「拥抱Data+AI」系列第2篇:阿里云DMS+AnalyticDB助力游戏日志数据分析与预测
拥抱Data+AI|解码Data+AI助力游戏日志智能分析
|
人工智能 知识图谱
轻松搭建AI版“谁是卧底”游戏,muAgent框架让知识图谱秒变编排引擎,支持复杂推理+在线协同
蚂蚁集团推出muAgent,兼容现有市面各类Agent框架,同时可实现复杂推理、在线协同、人工交互、知识即用四大核心差异技术功能。
330 2
|
存储 人工智能 关系型数据库
拥抱Data+AI|玩家去哪儿了?解码Data+AI如何助力游戏日志智能分析
本文为阿里云瑶池数据库「拥抱Data+AI」系列连载第2篇,基于真实客户案例和最佳实践,探讨如何利用阿里云Data+AI解决方案应对游戏行业挑战,通过AI为游戏行业注入新的活力。文章详细介绍了日志数据的实时接入、高效查询、开源开放及AI场景落地,展示了完整的Data+AI解决方案及其实际应用效果。
|
机器学习/深度学习 人工智能 开发者
谷歌推世界首个AI游戏引擎,2000亿游戏产业恐颠覆!0代码生成游戏,老黄预言成真
【9月更文挑战第22天】谷歌近日推出的AI游戏引擎GameNGen,作为全球首款神经模型驱动的游戏引擎,引发了广泛关注。该引擎使用户无需编写代码即可生成游戏,并实现了与复杂环境的实时交互,显著提升了模拟质量。在单TPU上,GameNGen能以超20帧/秒的速度流畅模拟经典游戏《DOOM》。这项技术不仅简化了游戏开发流程,降低了成本,还为游戏设计带来了更多可能性。然而,它也可能改变游戏产业的商业模式和创意多样性。无论如何,GameNGen标志着游戏开发领域的一次重大革新。
350 2