Splunk Machine Learning Toolkit 3.0.0介绍

简介: 如果你了解机器学习确不知道如何使用、想避免复杂的算法,减少学习成本、想快速知道哪种算法最适合你的数据、想让自己算法和一套成熟可视化数据平台相结合、使用了开源算法想减少开发成本,那么使用Splunk Machine Learning Toolkit是不错的选择。

 

新的功能

1、加入模型管理模块

可以在模型管理模块中查看训练出的模型,查看模型详情,检查模型的配置,删除模型,更改模型权限。

 

2、 自定义算法和打包

自定义算法加入“algos.conf”配置文件,可以把自定义算法轻松打包成APP。

 

3、权限控制

ML-Toolkit中的fit、apply、summary等命令和训练出的模型可以通过splunk对象权限模型来管理;“加载现有设置”选项卡只加载当前用户的配置。

 

4、ML-SPL API重构

开发者可以友好的导入自定义算法,增强了ML-Toolkit的扩展能力。

 

新的算法

1、Gradient Boosting Classifier

2、Gradient Boosting Regressor

3、ACF

4、PACF

5、ARIMA

 

功能介绍

模型管理模块
在APP导航栏加入“Models”选项,进入我们可以看到模型清单,包括一个过滤器和筛选框

加入创建模型按钮

查看模型信息

配置模型权限

使用ML-SPL API添加自定义算法
1、 加入算法代码文件

我们建立SVR_app应用,使用Support Vector Regression(SVR)算法,在SPLUNK_HOME/etc/apps/SVR_app/bin/目录下建立app_algos文件夹,在app_algos目录下建立文件__init__.py、SVR.py,在SVR.py文件加入以下代码并保存:

from sklearn.svm import SVR as _SVR
from base import BaseAlgo, RegressorMixin
from util.param_util import convert_params

class SVR(RegressorMixin, BaseAlgo):
   def __init__(self, options):
       self.handle_options(options)
       params = options.get('params', {})
       out_params = convert_params(
           params,
           floats=['C', 'gamma'],
           strs=['kernel'],
           ints=['degree'],
       )
       self.estimator = _SVR(**out_params)
   @staticmethod
   def register_codecs():
       from codec.codecs import SimpleObjectCodec
       from codec import codecs_manager
       codecs_manager.add_codec('algos.SVR', 'SVR', SimpleObjectCodec)
       codecs_manager.add_codec('sklearn.svm.classes', 'SVR', SimpleObjectCodec)

2、修改配置文件

在SPLUNK_HOME/etc/apps/SVR_app/local/目录下建立文件algos.conf文件,加入以下内容:

[SVR]
package=app_algos
disabled=false

3、 修改权限

打开SPLUNK_HOME/etc/apps/SVR_app/metadata/local.meta文件修改权限,添加以下内容:

[algos]
export = system

4、测试

重启splunk服务后,进入Ml-Toolkit应用的search,使用以下SPL进行搜索,如果没有错误说明自定义算法可以使用了。

|inputlookup iris.csv | fit SVR petal_width from sepal_length

 

总结

如果你了解机器学习确不知道如何使用、想避免复杂的算法,减少学习成本、想快速知道哪种算法最适合你的数据、想让自己算法和一套成熟可视化数据平台相结合、使用了开源算法想减少开发成本,那么使用Splunk Machine Learning Toolkit是不错的选择。

 

更多资源

http://ask.10data.com/?/article/35

目录
相关文章
|
8月前
|
存储 人工智能 机器人
Azure Machine Learning - 聊天机器人构建
Azure Machine Learning - 聊天机器人构建
86 0
|
传感器 监控 自动驾驶
Machine Learning
Machine Learning
105 0
|
机器学习/深度学习 算法 Python
Machine Learning-L7-最大熵模型
Machine Learning-L7-最大熵模型
Machine Learning-L7-最大熵模型
|
机器学习/深度学习 消息中间件 运维
Elasticsearch Machine Learning 实践
RPC 服务的调用日志,通过Filebeat、Logstash 实时发送到Elasticsearch,现在需要通过对日志的调用情况实时统计分析,判断调用情况是否出现异常,并通过机器学习方法对异常情况进行发现与告警。
Elasticsearch Machine Learning  实践
|
机器学习/深度学习
这就是Machine Learning
这就是Machine Learning
144 0
这就是Machine Learning
|
数据挖掘
Machine learning preface
Machine learning Preface Definition T: Task E: Experience P: Performance Sequence: T -> E -> P Supervised learning Definition Give the right answer...
929 0
|
算法
吴恩达《Machine Learning Yearning》总结(31-40章)
31.解读学习曲线:其他情况 下图反映了高方差,通过增加数据集可以改善。 下图反映了高偏差和高方差,需要找到一种方法来同时减少方差和偏差。 32.绘制学习曲线 情况:当数据集非常小时,比如只有100个样本,这时绘制出来的学习曲线可能噪声非常大。
1235 0
|
算法 语音技术
吴恩达《Machine Learning Yearning》总结(21-30章)
21.偏差和方差举例 前提:对于人类而言,可以达到近乎完美的表现(即人类去做分类是误差可以接近0)。 (1)假设算法的表现如下:训练误差率:1%,开发误差率:11%;此时即为高方差(high variance),也被称为过拟合(overfitting)。
1170 0
|
算法 测试技术
吴恩达《Machine Learning Yearning》总结(11-20章)
11.何时修改开发集、测试集和度量指标 开展一个新项目,尽快选好开发集和测试集;例子,根据度量指标A分类器排在B分类器前面,但是团队认为B分类器在实际产品上优于A分类器,这时就需要考虑修改开发集和测试集,或者评价指标了。
1646 0