字符串相似度算法 递归与动态规划求解分析

简介: 1.概念   编辑距离,指的是两个字符串之间,由一个转换成另一个所需的最少编辑操作次数。许可的编辑操作包括:(1)将一个字符替换成另一个字符,(2)插入一个字符,(3)删除一个字符。   相似度,等于“编辑距离+1”的倒数。

1.概念

  编辑距离,指的是两个字符串之间,由一个转换成另一个所需的最少编辑操作次数。许可的编辑操作包括:(1)将一个字符替换成另一个字符,(2)插入一个字符,(3)删除一个字符。

  相似度等于“编辑距离+1”的倒数。

2.分析

  设有字符串a[0...n],b[0...m]。

  (1)当a[i]=b[j]时,说明这时候不需要编辑操作。编辑距离保持,即f(i,j)=f(i-1,j-1)

  (2)当a[i]!=b[j]时,可以有三种编辑操作。

  其中删除和插入操作,只对一个下标i或者j产生影响。如在下图中,当前匹配到(t1,t2)处,如果采用删除'g',只改变t1的下标。

  

   其中替换操作,会对2个下标都产生影响。如在下图中,当前匹配到(t1,t2)处,如果将'g'替换成'm',则下次就需要执行(t1+1,t2+1)处。

     

   所以可以推导出下面就是递推公式。

  

3.用递归求解代码

#include<stdio.h>
#include<string.h>
char *a="abcgh";
char *b="aecdgh";
int min(int t1,int t2,int t3)   ///求三个数的最小值
{
    int min;
    min=t1<t2?t1:t2;
    min=min<t3?min:t3;
    return min;
}
int calculate(int i,int enda,int j,int endb)
{
    int t1,t2,t3;
    if(i>enda)  ///i指示超过a[]的范围时
    {
        if(j>endb)
            return 0;
        else
            return endb-j+1;
    }
    if(j>endb)  ///j指示超过b[]的范围时
    {
        if(i>enda)
            return 0;
        else
            return enda-i+1;
    }
    if(*(a+i) == *(b+j))    ///如果两个相等,则直接求下一个位置
        return calculate(i+1,enda,j+1,endb);
    else
    {
        t1=calculate(i+1,enda,j,endb);  ///删除a[i]或在b中插入a[i]
        t2=calculate(i,enda,j+1,endb);  ///删除b[j]或在a中插入b[j]
        t3=calculate(i+1,enda,j+1,endb);    ///替换
        return 1+min(t1,t2,t3);
    }
}
int main()
{
    int dis=calculate(0,strlen(a)-1,0,strlen(b)-1);
    printf("dis=%d",dis);
    return 1;
}

 4.用动态规划求解代码

 

#include<stdio.h>
#include<string.h>
#define MAX 1000
int dp[MAX][MAX];   ///dp[i][j]表示当前a[0..i-1]与b[0..j-1]的编辑距离
char *a="agbgd";
char *b="ggd";

int min(int t1,int t2,int t3)   ///求三个数的最小值
{
    int min;
    min=t1<t2?t1:t2;
    min=min<t3?min:t3;
    return min;
}

int main()
{
    int i,j;
    int lena=strlen(a),lenb=strlen(b);
    memset(dp,0,sizeof(dp));
    for(i=0;i<=lena;i++)   ///a作为行,当b为空串时
        dp[0][i]=i;
    for(i=0;i<=lenb;i++)   ///b作为列,当a为空串时
        dp[i][0]=i;

    for(i=1;i<=lena;i++)
    {
        for(j=1;j<=lenb;j++)
        {
            if(*(a+i)==*(b+j))  ///相等时
                dp[i][j]=dp[i-1][j-1];
            else
                dp[i][j]=1+min(dp[i-1][j],dp[i][j-1],dp[i-1][j-1]); ///不相等时,取三种可能操作的最小数值+1
        }
    }
    printf("编辑距离为:dis=%d\n",dp[lena][lenb]);
    return ;
}

 类似有:  最长公共子序列求解:递归与动态规划方法

相关文章
|
25天前
|
算法
动态规划算法学习三:0-1背包问题
这篇文章是关于0-1背包问题的动态规划算法详解,包括问题描述、解决步骤、最优子结构性质、状态表示和递推方程、算法设计与分析、计算最优值、算法实现以及对算法缺点的思考。
55 2
动态规划算法学习三:0-1背包问题
|
12天前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。
|
25天前
|
算法
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
这篇文章介绍了动态规划算法中解决最大上升子序列问题(LIS)的方法,包括问题的描述、动态规划的步骤、状态表示、递推方程、计算最优值以及优化方法,如非动态规划的二分法。
58 0
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
|
25天前
|
算法
动态规划算法学习二:最长公共子序列
这篇文章介绍了如何使用动态规划算法解决最长公共子序列(LCS)问题,包括问题描述、最优子结构性质、状态表示、状态递归方程、计算最优值的方法,以及具体的代码实现。
103 0
动态规划算法学习二:最长公共子序列
|
28天前
|
算法 搜索推荐 Shell
数据结构与算法学习十二:希尔排序、快速排序(递归、好理解)、归并排序(递归、难理解)
这篇文章介绍了希尔排序、快速排序和归并排序三种排序算法的基本概念、实现思路、代码实现及其测试结果。
18 1
|
19天前
|
算法
PID算法原理分析
【10月更文挑战第12天】PID控制方法从提出至今已有百余年历史,其由于结构简单、易于实现、鲁棒性好、可靠性高等特点,在机电、冶金、机械、化工等行业中应用广泛。
|
25天前
|
算法
PID算法原理分析及优化
【10月更文挑战第6天】PID控制方法从提出至今已有百余年历史,其由于结构简单、易于实现、鲁棒性好、可靠性高等特点,在机电、冶金、机械、化工等行业中应用广泛。
|
25天前
|
存储 算法
动态规划算法学习一:DP的重要知识点、矩阵连乘算法
这篇文章是关于动态规划算法中矩阵连乘问题的详解,包括问题描述、最优子结构、重叠子问题、递归方法、备忘录方法和动态规划算法设计的步骤。
90 0
|
15天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
1天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。