Hadoop MapReduce处理海量小文件:自定义InputFormat和RecordReader

简介:

一般来说,基于Hadoop的MapReduce框架来处理数据,主要是面向海量大数据,对于这类数据,Hadoop能够使其真正发挥其能力。对于海量小文件,不是说不能使用Hadoop来处理,只不过直接进行处理效率不会高,而且海量的小文件对于HDFS的架构设计来说,会占用NameNode大量的内存来保存文件的元数据(Bookkeeping)。另外,由于文件比较小,我们是指远远小于HDFS默认Block大小(64M),比如1k~2M,都很小了,在进行运算的时候,可能无法最大限度地充分Locality特性带来的优势,导致大量的数据在集群中传输,开销很大。
但是,实际应用中,也存在类似的场景,海量的小文件的处理需求也大量存在。那么,我们在使用Hadoop进行计算的时候,需要考虑将小数据转换成大数据,比如通过合并压缩等方法,可以使其在一定程度上,能够提高使用Hadoop集群计算方式的适应性。Hadoop也内置了一些解决方法,而且提供的API,可以很方便地实现。
下面,我们通过自定义InputFormat和RecordReader来实现对海量小文件的并行处理。
基本思路描述如下:
在Mapper中将小文件合并,输出结果的文件中每行由两部分组成,一部分是小文件名称,另一部分是该小文件的内容。

编程实现

我们实现一个WholeFileInputFormat,用来控制Mapper的输入规格,其中对于输入过程中处理文本行的读取使用的是自定义的WholeFileRecordReader。当Map任务执行完成后,我们直接将Map的输出原样输出到HDFS中,使用了一个最简单的IdentityReducer。
现在,看一下我们需要实现哪些内容:

  1. 读取每个小文件内容的WholeFileRecordReader
  2. 定义输入小文件的规格描述WholeFileInputFormat
  3. 用来合并小文件的Mapper实现WholeSmallfilesMapper
  4. 输出合并后的文件Reducer实现IdentityReducer
  5. 配置运行将多个小文件合并成一个大文件

接下来,详细描述上面的几点内容。

  • WholeFileRecordReader类

输入的键值对类型,对小文件,每个文件对应一个InputSplit,我们读取这个InputSplit实际上就是具有一个Block的整个文件的内容,将整个文件的内容读取到BytesWritable,也就是一个字节数组。

01 package org.shirdrn.kodz.inaction.hadoop.smallfiles.whole;
02
03 import java.io.IOException;
04
05 import org.apache.hadoop.fs.FSDataInputStream;
06 import org.apache.hadoop.fs.FileSystem;
07 import org.apache.hadoop.fs.Path;
08 import org.apache.hadoop.io.BytesWritable;
09 import org.apache.hadoop.io.IOUtils;
10 import org.apache.hadoop.io.NullWritable;
11 import org.apache.hadoop.mapreduce.InputSplit;
12 import org.apache.hadoop.mapreduce.JobContext;
13 import org.apache.hadoop.mapreduce.RecordReader;
14 import org.apache.hadoop.mapreduce.TaskAttemptContext;
15 import org.apache.hadoop.mapreduce.lib.input.FileSplit;
16
17 public class WholeFileRecordReader extends RecordReader<NullWritable, BytesWritable> {
18
19 private FileSplit fileSplit;
20 private JobContext jobContext;
21 private NullWritable currentKey = NullWritable.get();
22 private BytesWritable currentValue;
23 private boolean finishConverting = false;
24
25 @Override
26 public NullWritable getCurrentKey() throws IOException, InterruptedException {
27 return currentKey;
28 }
29
30 @Override
31 public BytesWritable getCurrentValue() throws IOException, InterruptedException {
32 return currentValue;
33 }
34
35 @Override
36 public void initialize(InputSplit split, TaskAttemptContext context) throwsIOException, InterruptedException {
37 this.fileSplit = (FileSplit) split;
38 this.jobContext = context;
39 context.getConfiguration().set("map.input.file", fileSplit.getPath().getName());
40 }
41
42 @Override
43 public boolean nextKeyValue() throws IOException, InterruptedException {
44 if (!finishConverting) {
45 currentValue = new BytesWritable();
46 int len = (int) fileSplit.getLength();
47 byte[] content = new byte[len];
48 Path file = fileSplit.getPath();
49 FileSystem fs = file.getFileSystem(jobContext.getConfiguration());
50 FSDataInputStream in = null;
51 try {
52 in = fs.open(file);
53 IOUtils.readFully(in, content, 0, len);
54 currentValue.set(content, 0, len);
55 } finally {
56 if (in != null) {
57 IOUtils.closeStream(in);
58 }
59 }
60 finishConverting = true;
61 return true;
62 }
63 return false;
64 }
65
66 @Override
67 public float getProgress() throws IOException {
68 float progress = 0;
69 if (finishConverting) {
70 progress = 1;
71 }
72 return progress;
73 }
74
75 @Override
76 public void close() throws IOException {
77 // TODO Auto-generated method stub
78
79 }
80 }

实现RecordReader接口,最核心的就是处理好迭代多行文本的内容的逻辑,每次迭代通过调用nextKeyValue()方法来判断是否还有可读的文本行,直接设置当前的Key和Value,分别在方法getCurrentKey()和getCurrentValue()中返回对应的值。
另外,我们设置了”map.input.file”的值是文件名称,以便在Map任务中取出并将文件名称作为键写入到输出。

  • WholeFileInputFormat类
01 package org.shirdrn.kodz.inaction.hadoop.smallfiles.whole;
02
03 import java.io.IOException;
04
05 import org.apache.hadoop.io.BytesWritable;
06 import org.apache.hadoop.io.NullWritable;
07 import org.apache.hadoop.mapreduce.InputSplit;
08 import org.apache.hadoop.mapreduce.RecordReader;
09 import org.apache.hadoop.mapreduce.TaskAttemptContext;
10 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
11
12 public class WholeFileInputFormat extends FileInputFormat<NullWritable, BytesWritable> {
13
14 @Override
15 public RecordReader<NullWritable, BytesWritable> createRecordReader(InputSplit split, TaskAttemptContext context) throws IOException, InterruptedException {
16 RecordReader<NullWritable, BytesWritable> recordReader = newWholeFileRecordReader();
17 recordReader.initialize(split, context);
18 return recordReader;
19 }
20 }

这个类实现比较简单,继承自FileInputFormat后需要实现createRecordReader()方法,返回用来读文件记录的RecordReader,直接使用前面实现的WholeFileRecordReader创建一个实例,然后调用initialize()方法进行初始化。

  • WholeSmallfilesMapper
01 package org.shirdrn.kodz.inaction.hadoop.smallfiles.whole;
02
03 import java.io.IOException;
04
05 import org.apache.hadoop.io.BytesWritable;
06 import org.apache.hadoop.io.NullWritable;
07 import org.apache.hadoop.io.Text;
08 import org.apache.hadoop.mapreduce.Mapper;
09
10 public class WholeSmallfilesMapper extends Mapper<NullWritable, BytesWritable, Text, BytesWritable> {
11
12 private Text file = new Text();
13
14 @Override
15 protected void map(NullWritable key, BytesWritable value, Context context) throwsIOException, InterruptedException {
16 String fileName = context.getConfiguration().get("map.input.file");
17 file.set(fileName);
18 context.write(file, value);
19 }
20 }
  • IdentityReducer类
01 package org.shirdrn.kodz.inaction.hadoop.smallfiles;
02
03 import java.io.IOException;
04
05 import org.apache.hadoop.mapreduce.Reducer;
06
07 public class IdentityReducer<Text, BytesWritable> extends Reducer<Text, BytesWritable, Text, BytesWritable> {
08
09 @Override
10 protected void reduce(Text key, Iterable<BytesWritable> values, Context context)throws IOException, InterruptedException {
11 for (BytesWritable value : values) {
12 context.write(key, value);
13 }
14 }
15 }

这个是Reduce任务的实现,只是将Map任务的输出原样写入到HDFS中。

  • WholeCombinedSmallfiles
01 package org.shirdrn.kodz.inaction.hadoop.smallfiles.whole;
02
03 import java.io.IOException;
04
05 import org.apache.hadoop.conf.Configuration;
06 import org.apache.hadoop.fs.Path;
07 import org.apache.hadoop.io.BytesWritable;
08 import org.apache.hadoop.io.Text;
09 import org.apache.hadoop.mapreduce.Job;
10 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
11 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
12 import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;
13 import org.apache.hadoop.util.GenericOptionsParser;
14 import org.shirdrn.kodz.inaction.hadoop.smallfiles.IdentityReducer;
15
16 public class WholeCombinedSmallfiles {
17
18 public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
19
20 Configuration conf = new Configuration();
21 String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
22 if (otherArgs.length != 2) {
23 System.err.println("Usage: conbinesmallfiles <in> <out>");
24 System.exit(2);
25 }
26
27 Job job = new Job(conf, "combine smallfiles");
28
29 job.setJarByClass(WholeCombinedSmallfiles.class);
30 job.setMapperClass(WholeSmallfilesMapper.class);
31 job.setReducerClass(IdentityReducer.class);
32
33 job.setMapOutputKeyClass(Text.class);
34 job.setMapOutputValueClass(BytesWritable.class);
35 job.setOutputKeyClass(Text.class);
36 job.setOutputValueClass(BytesWritable.class);
37
38 job.setInputFormatClass(WholeFileInputFormat.class);
39 job.setOutputFormatClass(SequenceFileOutputFormat.class);
40
41 job.setNumReduceTasks(5);
42
43 FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
44 FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
45
46 int exitFlag = job.waitForCompletion(true) ? 0 : 1;
47 System.exit(exitFlag);
48 }
49
50 }

这是是程序的入口,主要是对MapReduce任务进行配置,只需要设置好对应的配置即可。我们设置了5个Reduce任务,最终会有5个输出结果文件。
这里,我们的Reduce任务执行的输出格式为SequenceFileOutputFormat定义的,就是SequenceFile,二进制文件。

运行程序

  • 准备工作
1 jar -cvf combine-smallfiles.jar -C ./ org/shirdrn/kodz/inaction/hadoop/smallfiles
2 xiaoxiang@ubuntu3:~$ cd /opt/stone/cloud/hadoop-1.0.3
3 xiaoxiang@ubuntu3:/opt/stone/cloud/hadoop-1.0.3$ bin/hadoop fs -mkdir/user/xiaoxiang/datasets/smallfiles
4 xiaoxiang@ubuntu3:/opt/stone/cloud/hadoop-1.0.3$ bin/hadoop fs -copyFromLocal /opt/stone/cloud/dataset/smallfiles/* /user/xiaoxiang/datasets/smallfiles
  • 运行MapReduce程序
001 xiaoxiang@ubuntu3:/opt/stone/cloud/hadoop-1.0.3$ bin/hadoop jar combine-smallfiles.jar org.shirdrn.kodz.inaction.hadoop.smallfiles.whole.WholeCombinedSmallfiles /user/xiaoxiang/datasets/smallfiles /user/xiaoxiang/output/smallfiles/whole
002 13/03/23 14:09:24 INFO input.FileInputFormat: Total input paths to process : 117
003 13/03/23 14:09:24 INFO mapred.JobClient: Running job: job_201303111631_0016
004 13/03/23 14:09:25 INFO mapred.JobClient: map 0% reduce 0%
005 13/03/23 14:09:40 INFO mapred.JobClient: map 1% reduce 0%
006 13/03/23 14:09:46 INFO mapred.JobClient: map 3% reduce 0%
007 13/03/23 14:09:52 INFO mapred.JobClient: map 5% reduce 0%
008 13/03/23 14:09:58 INFO mapred.JobClient: map 6% reduce 0%
009 13/03/23 14:10:04 INFO mapred.JobClient: map 8% reduce 0%
010 13/03/23 14:10:10 INFO mapred.JobClient: map 10% reduce 0%
011 13/03/23 14:10:13 INFO mapred.JobClient: map 10% reduce 1%
012 13/03/23 14:10:16 INFO mapred.JobClient: map 11% reduce 1%
013 13/03/23 14:10:22 INFO mapred.JobClient: map 13% reduce 1%
014 13/03/23 14:10:28 INFO mapred.JobClient: map 15% reduce 1%
015 13/03/23 14:10:34 INFO mapred.JobClient: map 17% reduce 1%
016 13/03/23 14:10:40 INFO mapred.JobClient: map 18% reduce 2%
017 13/03/23 14:10:46 INFO mapred.JobClient: map 20% reduce 2%
018 13/03/23 14:10:52 INFO mapred.JobClient: map 22% reduce 2%
019 13/03/23 14:10:58 INFO mapred.JobClient: map 23% reduce 2%
020 13/03/23 14:11:04 INFO mapred.JobClient: map 25% reduce 3%
021 13/03/23 14:11:10 INFO mapred.JobClient: map 27% reduce 3%
022 13/03/23 14:11:16 INFO mapred.JobClient: map 29% reduce 3%
023 13/03/23 14:11:22 INFO mapred.JobClient: map 30% reduce 3%
024 13/03/23 14:11:28 INFO mapred.JobClient: map 32% reduce 3%
025 13/03/23 14:11:34 INFO mapred.JobClient: map 34% reduce 4%
026 13/03/23 14:11:40 INFO mapred.JobClient: map 35% reduce 4%
027 13/03/23 14:11:46 INFO mapred.JobClient: map 37% reduce 4%
028 13/03/23 14:11:52 INFO mapred.JobClient: map 39% reduce 4%
029 13/03/23 14:11:58 INFO mapred.JobClient: map 41% reduce 5%
030 13/03/23 14:12:04 INFO mapred.JobClient: map 42% reduce 5%
031 13/03/23 14:12:10 INFO mapred.JobClient: map 44% reduce 5%
032 13/03/23 14:12:16 INFO mapred.JobClient: map 46% reduce 5%
033 13/03/23 14:12:22 INFO mapred.JobClient: map 47% reduce 5%
034 13/03/23 14:12:25 INFO mapred.JobClient: map 47% reduce 6%
035 13/03/23 14:12:28 INFO mapred.JobClient: map 49% reduce 6%
036 13/03/23 14:12:34 INFO mapred.JobClient: map 51% reduce 6%
037 13/03/23 14:12:40 INFO mapred.JobClient: map 52% reduce 6%
038 13/03/23 14:12:46 INFO mapred.JobClient: map 54% reduce 7%
039 13/03/23 14:12:52 INFO mapred.JobClient: map 56% reduce 7%
040 13/03/23 14:12:58 INFO mapred.JobClient: map 58% reduce 7%
041 13/03/23 14:13:04 INFO mapred.JobClient: map 59% reduce 7%
042 13/03/23 14:13:10 INFO mapred.JobClient: map 61% reduce 7%
043 13/03/23 14:13:13 INFO mapred.JobClient: map 61% reduce 8%
044 13/03/23 14:13:16 INFO mapred.JobClient: map 63% reduce 8%
045 13/03/23 14:13:22 INFO mapred.JobClient: map 64% reduce 8%
046 13/03/23 14:13:28 INFO mapred.JobClient: map 66% reduce 8%
047 13/03/23 14:13:34 INFO mapred.JobClient: map 68% reduce 8%
048 13/03/23 14:13:40 INFO mapred.JobClient: map 70% reduce 9%
049 13/03/23 14:13:46 INFO mapred.JobClient: map 71% reduce 9%
050 13/03/23 14:13:52 INFO mapred.JobClient: map 73% reduce 9%
051 13/03/23 14:13:58 INFO mapred.JobClient: map 75% reduce 9%
052 13/03/23 14:14:04 INFO mapred.JobClient: map 76% reduce 9%
053 13/03/23 14:14:10 INFO mapred.JobClient: map 78% reduce 10%
054 13/03/23 14:14:16 INFO mapred.JobClient: map 80% reduce 10%
055 13/03/23 14:14:22 INFO mapred.JobClient: map 82% reduce 10%
056 13/03/23 14:14:28 INFO mapred.JobClient: map 83% reduce 10%
057 13/03/23 14:14:34 INFO mapred.JobClient: map 85% reduce 10%
058 13/03/23 14:14:37 INFO mapred.JobClient: map 85% reduce 11%
059 13/03/23 14:14:40 INFO mapred.JobClient: map 87% reduce 11%
060 13/03/23 14:14:46 INFO mapred.JobClient: map 88% reduce 11%
061 13/03/23 14:14:52 INFO mapred.JobClient: map 90% reduce 11%
062 13/03/23 14:14:58 INFO mapred.JobClient: map 92% reduce 12%
063 13/03/23 14:15:04 INFO mapred.JobClient: map 94% reduce 12%
064 13/03/23 14:15:10 INFO mapred.JobClient: map 95% reduce 12%
065 13/03/23 14:15:16 INFO mapred.JobClient: map 97% reduce 12%
066 13/03/23 14:15:22 INFO mapred.JobClient: map 99% reduce 12%
067 13/03/23 14:15:28 INFO mapred.JobClient: map 100% reduce 13%
068 13/03/23 14:15:37 INFO mapred.JobClient: map 100% reduce 26%
069 13/03/23 14:15:40 INFO mapred.JobClient: map 100% reduce 39%
070 13/03/23 14:15:49 INFO mapred.JobClient: map 100% reduce 59%
071 13/03/23 14:15:52 INFO mapred.JobClient: map 100% reduce 79%
072 13/03/23 14:15:58 INFO mapred.JobClient: map 100% reduce 100%
073 13/03/23 14:16:03 INFO mapred.JobClient: Job complete: job_201303111631_0016
074 13/03/23 14:16:03 INFO mapred.JobClient: Counters: 29
075 13/03/23 14:16:03 INFO mapred.JobClient: Job Counters
076 13/03/23 14:16:03 INFO mapred.JobClient: Launched reduce tasks=5
077 13/03/23 14:16:03 INFO mapred.JobClient: SLOTS_MILLIS_MAPS=491322
078 13/03/23 14:16:03 INFO mapred.JobClient: Total time spent by all reduces waiting after reserving slots (ms)=0
079 13/03/23 14:16:03 INFO mapred.JobClient: Total time spent by all maps waiting after reserving slots (ms)=0
080 13/03/23 14:16:03 INFO mapred.JobClient: Launched map tasks=117
081 13/03/23 14:16:03 INFO mapred.JobClient: Data-local map tasks=117
082 13/03/23 14:16:03 INFO mapred.JobClient: SLOTS_MILLIS_REDUCES=719836
083 13/03/23 14:16:03 INFO mapred.JobClient: File Output Format Counters
084 13/03/23 14:16:03 INFO mapred.JobClient: Bytes Written=147035685
085 13/03/23 14:16:03 INFO mapred.JobClient: FileSystemCounters
086 13/03/23 14:16:03 INFO mapred.JobClient: FILE_BYTES_READ=147032689
087 13/03/23 14:16:03 INFO mapred.JobClient: HDFS_BYTES_READ=147045529
088 13/03/23 14:16:03 INFO mapred.JobClient: FILE_BYTES_WRITTEN=296787727
089 13/03/23 14:16:03 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=147035685
090 13/03/23 14:16:03 INFO mapred.JobClient: File Input Format Counters
091 13/03/23 14:16:03 INFO mapred.JobClient: Bytes Read=147029851
092 13/03/23 14:16:03 INFO mapred.JobClient: Map-Reduce Framework
093 13/03/23 14:16:03 INFO mapred.JobClient: Map output materialized bytes=147036169
094 13/03/23 14:16:03 INFO mapred.JobClient: Map input records=117
095 13/03/23 14:16:03 INFO mapred.JobClient: Reduce shuffle bytes=145779618
096 13/03/23 14:16:03 INFO mapred.JobClient: Spilled Records=234
097 13/03/23 14:16:03 INFO mapred.JobClient: Map output bytes=147032074
098 13/03/23 14:16:03 INFO mapred.JobClient: CPU time spent (ms)=79550
099 13/03/23 14:16:03 INFO mapred.JobClient: Total committed heap usage (bytes)=19630391296
100 13/03/23 14:16:03 INFO mapred.JobClient: Combine input records=0
101 13/03/23 14:16:03 INFO mapred.JobClient: SPLIT_RAW_BYTES=15678
102 13/03/23 14:16:03 INFO mapred.JobClient: Reduce input records=117
103 13/03/23 14:16:03 INFO mapred.JobClient: Reduce input groups=117
104 13/03/23 14:16:03 INFO mapred.JobClient: Combine output records=0
105 13/03/23 14:16:03 INFO mapred.JobClient: Physical memory (bytes) snapshot=20658409472
106 13/03/23 14:16:03 INFO mapred.JobClient: Reduce output records=117
107 13/03/23 14:16:03 INFO mapred.JobClient: Virtual memory (bytes) snapshot=65064620032
108 13/03/23 14:16:03 INFO mapred.JobClient: Map output records=117
  • 验证程序运行结果
01 xiaoxiang@ubuntu3:/opt/stone/cloud/hadoop-1.0.3$ bin/hadoop fs -ls/user/xiaoxiang/output/smallfiles/whole
02 Found 7 items
03 -rw-r--r-- 3 xiaoxiang supergroup 0 2013-03-23 14:15 /user/xiaoxiang/output/smallfiles/whole/_SUCCESS
04 drwxr-xr-x - xiaoxiang supergroup 0 2013-03-23 14:09 /user/xiaoxiang/output/smallfiles/whole/_logs
05 -rw-r--r-- 3 xiaoxiang supergroup 30161482 2013-03-23 14:15 /user/xiaoxiang/output/smallfiles/whole/part-r-00000
06 -rw-r--r-- 3 xiaoxiang supergroup 30160646 2013-03-23 14:15 /user/xiaoxiang/output/smallfiles/whole/part-r-00001
07 -rw-r--r-- 3 xiaoxiang supergroup 27647901 2013-03-23 14:15 /user/xiaoxiang/output/smallfiles/whole/part-r-00002
08 -rw-r--r-- 3 xiaoxiang supergroup 30161567 2013-03-23 14:15 /user/xiaoxiang/output/smallfiles/whole/part-r-00003
09 -rw-r--r-- 3 xiaoxiang supergroup 28904089 2013-03-23 14:15 /user/xiaoxiang/output/smallfiles/whole/part-r-00004
10
11 xiaoxiang@ubuntu3:/opt/stone/cloud/hadoop-1.0.3$ bin/hadoop fs -text /user/xiaoxiang/output/smallfiles/whole/part-r-00000 | cut -d" " -f 1
12 data_50000_000 53
13 data_50000_005 4c
14 data_50000_014 47
15 data_50000_019 47
16 data_50000_023 50
17 data_50000_028 54
18 data_50000_032 45
19 data_50000_037 55
20 data_50000_041 4e
21 data_50000_046 4d
22 data_50000_050 4c
23 data_50000_055 55
24 data_50000_064 54
25 data_50000_069 42
26 data_50000_073 48
27 data_50000_078 54
28 data_50000_082 42
29 data_50000_087 53
30 data_50000_091 43
31 data_50000_096 41
32 data_50000_203 4d
33 data_50000_208 49
34 data_50000_212 48
35 data_50000_230 46

可以看到,Reducer阶段生成了5个文件,他们都是将小文件合并后的得到的大文件,如果需要对这些文件进行其他处理,可以再实现满足实际处理的Mapper,将输入路径指定的前面Reducer的输出路径即可。这样一来,对于大量小文件的处理,转换成了数个大文件的处理,就能够充分利用Hadoop MapReduce计算集群的优势。

目录
相关文章
|
7月前
|
分布式计算 Hadoop Java
MapReduce编程:自定义分区和自定义计数器
MapReduce编程:自定义分区和自定义计数器
99 0
|
4月前
|
存储 分布式计算 资源调度
Hadoop小文件解决方案
Hadoop小文件解决方案
|
4月前
|
存储 分布式计算 算法
MapReduce 处理压缩文件的能力
【8月更文挑战第12天】
50 4
|
4月前
|
存储 缓存 分布式计算
|
4月前
|
存储 分布式计算 Hadoop
Hadoop中RecordReader的用途详解
【8月更文挑战第31天】
63 0
|
5月前
|
分布式计算 算法 Hadoop
Hadoop数据倾斜自定义分区器
【7月更文挑战第5天】
40 3
|
5月前
|
分布式计算 监控 Hadoop
Hadoop数据倾斜使用自定义分区器
【7月更文挑战第3天】
42 1
|
5月前
|
分布式计算 Hadoop 开发者
Hadoop数据倾斜自定义分区器
【7月更文挑战第1天】
43 1
|
6月前
|
存储 分布式计算 NoSQL
|
6月前
|
数据采集 SQL 分布式计算

相关实验场景

更多