超全!基于Java的机器学习项目、环境、库...

简介: 你是一名希望开始或者正在学习机器学习的Java程序员吗? 利用机器学习编写程序是最佳的学习方式。你可以从头开始编写算法,但是利用现有的开源库,你可以取得更大的进步。 本文介绍了主要的平台和开放源码的机器学习库。

你是一名希望开始或者正在学习机器学习的Java程序员吗?

利用机器学习编写程序是最佳的学习方式。你可以从头开始编写算法,但是利用现有的开源库,你可以取得更大的进步。

本文介绍了主要的平台和开放源码的机器学习库。你可以使用这些机器学习库。

环境

本节描述了用于机器学习的Java环境或工作域。它们提供了用于执行机器学习任务的图形用户界面,还提供了用于开发自己应用程序的Java API。

WEKA

怀卡托环境知识分析(Weka)( https:// www.cs.waikato.ac.nz/ml/weka/)是一个由新西兰怀卡托大学开发的机器学习平台。提供Java的图形用户接口,命令行接口和Java API接口。它可能是最流行的Java机器学习库,也是开始或练习机器学习的好地方。

06f3696f15a420ffef634af8e6aaa61aa4538b97

KNIME

康斯坦茨信息挖掘(KNIME)(https://www.knime. com/)是德国康斯坦茨大学开发的一个分析和报告平台。它的研发重点是药物研究,但已扩展到一般商业智能。它提供一个图形用户接口(基于Eclipse)和Java API。

ee9700626dc448d0697f8003396f4790a0462dae
快速挖掘

快速挖掘(https://rapidminer.com/)由德国多特蒙德应用技术大学研发。它提供了一个GUI和一个Java API来开发自己的应用程序。还提供了数据处理、可视化和建模的机器学习算法。

4397581256981fe8045d23f64e069b82e4710a68


  • ELKI

ELKI是一个用于开发由索引结构支持的KDD-应用程序的环境(https://elki-project.github.io/),它是由德国慕尼黑的路德维希马克西米利安大学用Java语言开发的一款数据挖掘工作平台。它的重点是在关系型数据库中处理数据,例如异常值检测和分类(基于距离函数方法)。它提供了一个迷你GUI、命令行接口和Java API。

5c44a5d33ae5e4543f6da1cfdf8ac0113cfd3e6d

其实本文列出的每个项目都带有Java API库。不过在这一节中列出的这些项目仅提供了一个Java API。从狭义上来说,它们是机器学习库。

Java-ML

Java机器学习库(Java-ML)(http://java-ml.sourceforge.net/)提供了在Java中实现的机器学习算法的集合。它为每一种算法提供了标准接口,没有UI(用户界面),也没有引用相关的科学文献来进一步阅读。它包括数据操作、群集、特性选择和分类的方法。值得注意的是,截止本文成稿为止,它的最新一个版本是在2012年。

JSAT

Java统计分析工具(JSAT)(https://github.com /EdwardRaff/JSAT/tree/master)提供了一个纯Java语言实现的标准机器学习算法,用于解决中等规模的问题。JSAT的作者称他开发的这个库部分是为了进行自我学习,部分是为了完成工作。尽管如此,算法的列表还是令人印象深刻的。它包括分类、回归、合集、聚类和特征选择方法。

Java大数据项目

本节列出了适合大数据的Java项目,例如机器集群。

Mahout (Hadoop)

Apache Mahout(https://mahout.apache.org/)提供了用于实现Apache Hadoop平台(分布式映射化简)的机器学习算法。该项目主要关注集群和分类算法,一个流行的应用程序驱动实现是它在推荐系统的协作筛选中使用。还包括在单个节点上运行算法的引用实现。

MLlib (Spark)

Apache机器学习库(MLlib)(http://spark. apache.org/mllib/)提供了用于Apache Spark平台(HDFS,而不是映射化简)机器学习算法的实现。尽管Java库和平台支持Java、Scala和Python绑定。这个库是新的,算法的列表很短,但是增长很快。

MOA

大规模在线分析(MOA)(https://moa.cms. waikato.ac.nz/)是一个开源平台,由新西兰怀卡托大学的数据流挖掘设计。和Weka相同(开发在相同的地方),提供一个GUI,命令行接口和Java API。它提供了一长串的算法,重点是分类和支持离群检测,解决概念漂移。MOA使用先进的数据挖掘和机器学习系统(ADAMS)(https://adams.cms.waikato.ac.nz/)管理工作流,开发也在相同的地方。

SAMOA

可扩展的高级在线分析(SAMOA)(http://samoa-project.net/)是一个由雅虎开发的分布式流媒体机器学习框架。它的设计运行在Apache Storm 和 Apache S4上。系统可以利用MOA项目提供的算法来完成分类等任务。

自然语言处理

本节将致力于Java库和项目,用于解决来自机器学习的子领域的问题,称之为自然语言处理(NLP)。

自然语言处理不是我的领域,所以我仅仅指出关键的库。

  • OpenNLP: Apache OpenNLP(http://opennlp. apache.org/)是处理自然语言文本的工具包,它为诸如标记化、分割和实体提取等自然语言处理任务提供了方法。
  • LingPipe:LingPipe(http://alias-i.com/lingpipe/)是计算语言学的一个工具包,包括了主题分类、实体提取、聚类和情绪分析的方法。
  • GATE: 文本工程一般结构(GATE)(http://gate.ac.uk/)是一个开源的用于文本处理的库。它提供了针对不同用例子项目的数组。
  • MALLET:机器学习语言工具包(MALLET)( http://mallet.cs.umass.edu/)是一种Java工具包,用于统计自然语言处理、文档分类、集群、主题建模和信息提取。

计算机视觉

本节列出了机器学习子领域库,称之为计算机视觉(VC)。

计算机视觉不是我熟悉的领域,所以我仅仅指出关键的库。

  • BoofCV:BoofCV(http://boofcv.org/index.php?title=Main_Page)是一个用于计算机视觉和机器人应用的开放源码库。它支持图像处理、特征、几何视觉、校准、识别和图像数据输入等功能。

深度学习

随着深度学习方法和硬件的快速发展,神经网络又重新流行起来。本节列出了用于处理神经网络和深度学习的关键Java库。

  • EncogEncog(http://www.heatonresearch.com/encog)是一个机器学习库,提供了诸如SVM、经典神经网络、遗传编程、贝叶斯网络、HMM和遗传算法的算法。
  • Deeplearning4jDeeplearning4j(http://deeplearning4j.org/)被认为是一个用Java编写的商业级的深度学习库。它被描述为与Hadoop兼容并提供了一些算法,包括受限的Boltzmann机,深层的信念网络和堆叠的降噪自动编码器。

总结

在这篇文章中,当我们在Java中选择一个用于机器学习的库或平台时,我们已经接触到了大项目名称选项。这些是倍受学习者欢迎的项目,但绝不只这些列出来的。比如:看一下MLOSS.org (http://mloss.org/software/language/java/)上的这个页面,(截止本文时)它列出了71个基于java的开源机器学习项目。这是一件很重要的工作,我相信GitHub和SourceForge还有更多的工作要做。

学习者的关键是要认真考虑自己的项目和需求。从一个库或者一个平台中找出你需要的东西,然后选择和学习一个最适合自己的项目。


原文发布时间为:2017-12-5

本文作者:Jason Brownlee

本文来自云栖社区合作伙伴“数据派THU”,了解相关信息可以关注“数据派THU”微信公众号

相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
5月前
|
安全 Java API
Java Web 在线商城项目最新技术实操指南帮助开发者高效完成商城项目开发
本项目基于Spring Boot 3.2与Vue 3构建现代化在线商城,涵盖技术选型、核心功能实现、安全控制与容器化部署,助开发者掌握最新Java Web全栈开发实践。
572 1
|
6月前
|
前端开发 Java API
2025 年 Java 全栈从环境搭建到项目上线实操全流程指南:Java 全栈最新实操指南(2025 版)
本指南涵盖2025年Java全栈开发核心技术,从JDK 21环境搭建、Spring Boot 3.3实战、React前端集成到Docker容器化部署,结合最新特性与实操流程,助力构建高效企业级应用。
1997 1
|
6月前
|
JavaScript Java 微服务
现代化 Java Web 在线商城项目技术方案与实战开发流程及核心功能实现详解
本项目基于Spring Boot 3与Vue 3构建现代化在线商城系统,采用微服务架构,整合Spring Cloud、Redis、MySQL等技术,涵盖用户认证、商品管理、购物车功能,并支持Docker容器化部署与Kubernetes编排。提供完整CI/CD流程,助力高效开发与扩展。
749 64
|
5月前
|
IDE 安全 Java
Lombok 在企业级 Java 项目中的隐性成本:便利背后的取舍之道
Lombok虽能简化Java代码,但其“魔法”特性易破坏封装、影响可维护性,隐藏调试难题,且与JPA等框架存在兼容风险。企业级项目应优先考虑IDE生成、Java Records或MapStruct等更透明、稳健的替代方案,平衡开发效率与系统长期稳定性。
254 1
|
5月前
|
存储 小程序 Java
热门小程序源码合集:微信抖音小程序源码支持PHP/Java/uni-app完整项目实践指南
小程序已成为企业获客与开发者创业的重要载体。本文详解PHP、Java、uni-app三大技术栈在电商、工具、服务类小程序中的源码应用,提供从开发到部署的全流程指南,并分享选型避坑与商业化落地策略,助力开发者高效构建稳定可扩展项目。
|
7月前
|
安全 Java 测试技术
Java 大学期末实操项目在线图书管理系统开发实例及关键技术解析实操项目
本项目基于Spring Boot 3.0与Java 17,实现在线图书管理系统,涵盖CRUD操作、RESTful API、安全认证及单元测试,助力学生掌握现代Java开发核心技能。
415 1
|
7月前
|
缓存 Java 数据库
Java 项目分层架构实操指南及长尾关键词优化方案
本指南详解基于Spring Boot与Spring Cloud的Java微服务分层架构,以用户管理系统为例,涵盖技术选型、核心代码实现、服务治理及部署实践,助力掌握现代化Java企业级开发方案。
353 2
|
7月前
|
安全 JavaScript Java
java Web 项目完整案例实操指南包含从搭建到部署的详细步骤及热门长尾关键词解析的实操指南
本项目为一个完整的JavaWeb应用案例,采用Spring Boot 3、Vue 3、MySQL、Redis等最新技术栈,涵盖前后端分离架构设计、RESTful API开发、JWT安全认证、Docker容器化部署等内容,适合掌握企业级Web项目全流程开发与部署。
627 0
|
7月前
|
人工智能 安全 Java
掌握Java反射:在项目中高效应用反射机制
Java反射是一种强大功能,允许程序在运行时动态获取类信息、创建对象、调用方法和访问字段,提升程序灵活性。它在框架开发、动态代理、注解处理等场景中广泛应用,如Spring和Hibernate。但反射也存在性能开销、安全风险和代码复杂性,应谨慎使用。
160 0