AI大事件 | 人类理解行为数据集推出,Uber发布自家分布式深度学习框架

简介: 呜啦啦啦啦啦大家好呀,又到了本周的AI大事件时间了。过去的一周中AI圈都发生了什么?大佬们互撕了哪些问题?研究者们发布了哪些值得一读的论文?又有哪些开源的代码和数据库可以使用了?文摘菌带你盘点过去一周AI大事件! 新闻 AlphaGo Zero: 从零开始的学习 来源:DEEPMIND.

呜啦啦啦啦啦大家好呀,又到了本周的AI大事件时间了。过去的一周中AI圈都发生了什么?大佬们互撕了哪些问题?研究者们发布了哪些值得一读的论文?又有哪些开源的代码和数据库可以使用了?文摘菌带你盘点过去一周AI大事件!

新闻


AlphaGo Zero: 从零开始的学习

来源:DEEPMIND.COM:

链接:https://deepmind.com/blog/alphago-zero-learning-scratch/?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

上周乃至最近一段时间人工智能领域最大的新闻莫过于AlphaGo Zero的诞生。它比AlphaGo更加强大,可以说是历史上最强的围棋运动员。与AlphaGo不同,AlphaGo Zero跳过了学习人类棋手的对弈,而直接从完全随机的自我对弈开始学习。结果是,AlphaGo超越了人类的水平,并在100场比赛中全部击败了此前的冠军AlphaGo。


英特尔推出了一组针对NVIDIA GPU的新型AI芯片

来源:WWW.THEVERGE.COM

链接:https://www.theverge.com/circuitbreaker/2017/10/17/16488414/intel-ai-chips-nervana-neural-network-processor-nnp

英特尔Nervana神经网络处理器系列(简称NNP)是为了响应机器学习和数据中心的需要而设计的。 NNP芯片是英特尔收购Nervana的直接结果。 目前还没有对该芯片进行过基准测试的报道,芯片的确切细节还不得而知。


准备好和机器人亲密接触了吗

来源:WW.WIRED.COM

链接:https://www.wired.com/2017/10/hiroshi-ishiguro-when-robots-act-just-like-humans/?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

Hiroshi Ishiguro构建了一个美丽、现实到接近人类的机器人。 在学术上,他正在用他们来理解人与人之间互动的机制。 但他的真正任务是解开互动的本质。

文章&教程


AMA:DeepMind的AlphaGo团队

来源:WWW.REDDIT.COM

链接: https://www.reddit.com/r/MachineLearning/comments/76xjb5/ama_we_are_david_silver_and_julian_schrittwieser/

DeepMind AlphaGo团队的David Silver和Julian Schrittwieser在十月十九号在Reddit上回答了各路网友提出的问题,点击链接即可查看他们对AlphaGo Zero你的新见解和对团队未来目标的计划。


Word Embeddings : 趋势和未来发展方向

来源:RUDER.IO

链接:http://ruder.io/word-embeddings-2017/?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

Word Embeddings技术(类似word2vec)对NLP领域有很大的影响。 这篇文章解决了他们的一些缺陷,并讨论了最近尝试解决它们的方法。


《The Deep Learning Book》伴读视频

来源:WWW.YOUTUBE.COM

链接:如果你还能的话,去YouTube找吧!:)

《The Deep Learning Book》这本深度学习巨著搭配的视频集合。 视频的各个章节由深度学习领域的各个大佬发表,其中包括作者之一,Ian Goodfellow。 如果你正在阅读这本书,这是一个很好的辅助学习资源。


从仿真进行推广(OpenAI)

来源:BLOG.OPENAI.COM

链接:https://blog.openai.com/generalizing-from-simulation/?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

这项新技术允许机器人控制器完全在仿真环境中进行训练并将结果部署在物理机器人上,以便在解决简单任务时对环境中的计划外变化做出反应。


代码,项目&数据

AVA:人类理解行为的数据集

来源:RESEARCH.GOOGLEBLOG.COM

链接:如果你还能的话,去google blog里找吧!

数据集由YouTube的公开提供的视频组成,在空间和时间维度对80个原子动作(例如步行,踢手握手)进行了注释和标签,形成了57.6k的视频片段,96k标记的执行动作,以及210k个动作标签。


Nervana Coach:强化学习框架

来源:COACH.NERVANASYS.COM

链接:http://coach.nervanasys.com/?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

Nervana Coach是一个基于python的强化学习研究框架,包含许多最先进算法的实现。 该文档还包含各种优秀算法的摘要。


Horovod:Uber的分布式深度学习框架

来源:ENG.UBER.COM

链接:https://eng.uber.com/horovod/?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

Horovod是一个分布式的TensorFlow训练框架。Horovod的目标是使分布式深度学习能够更快运行并且易于使用。


爆款论文


AlphaGo Zero 的论文(Mastering the game of Go without human knowledge)

来源:WWW.NATURE.COM

链接:https://www.nature.com/articles/nature24270.epdf?author_access_token=VJXbVjaSHxFoctQQ4p2k4tRgN0jAjWel9jnR3ZoTv0PVW4gB86EEpGqTRDtpIz-2rmo8-KG06gqVobU5NSCFeHILHcVFUeMsbvwS-lxjqQGg98faovwjxeTUgZAUMnRQ&utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

一种完全基于强化学习的算法,没有除了游戏规则之外的人类的数据,引导或领域知识。 AlphaGo成为了它自己的老师:神经网络被训练来用作预测AlphaGo自己的选择。这种神经网络提高了树搜索的强度,实现了更高质量的移动选择和更有效的自我对弈。AlphaGo Zero不但超越了人类的表现,并且在与之前赢得柯洁的AlphaGo版本的对弈中以100-0碾压了对手。


卷积神经网络中类不平衡问题的系统研究

来源:ARXIV.ORG

链接:https://arxiv.org/abs/1710.05381?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

作者系统地研究了类不平衡对卷积神经网络分类性能的影响。他们使用了三个基准数据集,MNIST,CIFAR-10和ImageNet,并比较了几种方法来解决这个问题:过采样,欠采样,两阶段训练以及对类概率进行阈值补偿。


深度学习的泛化

来源:ARXIV.ORG

链接:https://arxiv.org/abs/1710.05468?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

本文解释了为什么深度学习在可能出现大容量、算法不稳定、非鲁棒性的情况下还可以很好地泛化,有效地解决了之前文献中的一个开放问题。基于新的理论观点,本文还提出了一系列新的正则化方法。


多代理沟通中的紧急翻译

来源:ARXIV.ORG– Share

链接:https://arxiv.org/abs/1710.06922?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

本篇论文设置了这样一个游戏,游戏由以两种不同的语言作为母语的代理参加,他们需要相互沟通来解决一个视觉参考任务,只有能够翻译对方的语言并理解

A communication game where two agents, native speakers of their own respective languages, jointly learn to solve a visual referential task. The ability to understand and translate a foreign language emerges as a means to achieve shared goals.

原文发布时间为:2017-10-24

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“大数据文摘”微信公众号

相关文章
|
4月前
|
人工智能 Cloud Native Java
书本大纲:从芯片、分布式到云计算AI时代
本文深入探讨并发编程、JVM原理、RPC框架、高并发系统、分布式架构及云原生技术,涵盖内存模型、同步机制、垃圾回收、网络协议、存储优化、弹性伸缩等核心议题,揭示多线程运行逻辑与高并发实现路径,助你掌握现代软件底层原理与工程实践。
192 6
|
3月前
|
人工智能 Java 开发者
阿里出手!Java 开发者狂喜!开源 AI Agent 框架 JManus 来了,初次见面就心动~
JManus是阿里开源的Java版OpenManus,基于Spring AI Alibaba框架,助力Java开发者便捷应用AI技术。支持多Agent框架、网页配置、MCP协议及PLAN-ACT模式,可集成多模型,适配阿里云百炼平台与本地ollama。提供Docker与源码部署方式,具备无限上下文处理能力,适用于复杂AI场景。当前仍在完善模型配置等功能,欢迎参与开源共建。
1692 58
阿里出手!Java 开发者狂喜!开源 AI Agent 框架 JManus 来了,初次见面就心动~
|
2月前
|
机器学习/深度学习 人工智能 监控
面向智慧牧场的牛行为识别数据集(5000张图片已划分、已标注) | AI训练适用于目标检测任务
本数据集包含5000张已标注牛行为图片,涵盖卧、站立、行走三类,适用于YOLO等目标检测模型训练。数据划分清晰,标注规范,场景多样,助力智慧牧场、健康监测与AI科研。
面向智慧牧场的牛行为识别数据集(5000张图片已划分、已标注) | AI训练适用于目标检测任务
|
3月前
|
人工智能 运维 Java
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
本文基于Apache Flink PMC成员宋辛童在Community Over Code Asia 2025的演讲,深入解析Flink Agents项目的技术背景、架构设计与应用场景。该项目聚焦事件驱动型AI智能体,结合Flink的实时处理能力,推动AI在工业场景中的工程化落地,涵盖智能运维、直播分析等典型应用,展现其在AI发展第四层次——智能体AI中的重要意义。
1323 27
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
|
3月前
|
人工智能 数据可视化 数据处理
AI智能体框架怎么选?7个主流工具详细对比解析
大语言模型需借助AI智能体实现“理解”到“行动”的跨越。本文解析主流智能体框架,从RelevanceAI、smolagents到LangGraph,涵盖技术门槛、任务复杂度、社区生态等选型关键因素,助你根据项目需求选择最合适的开发工具,构建高效、可扩展的智能系统。
933 3
AI智能体框架怎么选?7个主流工具详细对比解析
|
2月前
|
机器学习/深度学习 人工智能 文字识别
中药材图像识别数据集(100类,9200张)|适用于YOLO系列深度学习分类检测任务
本数据集包含9200张中药材图像,覆盖100种常见品类,已标注并划分为训练集与验证集,支持YOLO等深度学习模型。适用于中药分类、目标检测、AI辅助识别及教学应用,助力中医药智能化发展。
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
AI Compass前沿速览:IndexTTS2–B站、HuMo、Stand-In视觉生成框架、Youtu-GraphRAG、MobileLLM-R1–Meta、PP-OCRv5
AI Compass前沿速览:IndexTTS2–B站、HuMo、Stand-In视觉生成框架、Youtu-GraphRAG、MobileLLM-R1–Meta、PP-OCRv5
340 10
AI Compass前沿速览:IndexTTS2–B站、HuMo、Stand-In视觉生成框架、Youtu-GraphRAG、MobileLLM-R1–Meta、PP-OCRv5
|
2月前
|
人工智能 JavaScript 前端开发
GenSX (不一样的AI应用框架)架构学习指南
GenSX 是一个基于 TypeScript 的函数式 AI 工作流框架,以“函数组合替代图编排”为核心理念。它通过纯函数组件、自动追踪与断点恢复等特性,让开发者用自然代码构建可追溯、易测试的 LLM 应用。支持多模型集成与插件化扩展,兼具灵活性与工程化优势。
274 6
|
4月前
|
人工智能 自然语言处理 机器人
AI Compass前沿速览:Jetson Thor英伟达AI计算、Gemini 2.5 Flash Image、Youtu腾讯智能体框架、Wan2.2-S2V多模态视频生成、SpatialGen 3D场景生成模型
AI Compass前沿速览:Jetson Thor英伟达AI计算、Gemini 2.5 Flash Image、Youtu腾讯智能体框架、Wan2.2-S2V多模态视频生成、SpatialGen 3D场景生成模型
AI Compass前沿速览:Jetson Thor英伟达AI计算、Gemini 2.5 Flash Image、Youtu腾讯智能体框架、Wan2.2-S2V多模态视频生成、SpatialGen 3D场景生成模型

热门文章

最新文章