《中国人工智能学会通讯》——6.24 智能、知识和学习

简介: 本节书摘来自CCAI《中国人工智能学会通讯》一书中的第6章,第6.24节, 更多章节内容可以访问云栖社区“CCAI”公众号查看。c

6.24 智能、知识和学习

人工智能,为什么会在之前的几十年中遇到了很多阻碍?原因是,我们对世界的绝大部分认知,都并不会通过书面语言清清楚楚地、像一系列任务一样描述出来——而这恰恰是编写计算机程序所必需的步骤。这就是为什么我们还无法直接让计算机完成很多人类可以轻而易举完成的事情——不论是理解演讲、图像、语言还是驾驶汽车。而类似的尝试——在详尽数据库中组织事实集,为计算机注 入 智 能(organizing sets of facts in elaboratedatabases to imbue computers with a facsimile ofintelligence)——也都不太成功。

那正好是深度学习的用武之地。它是更广泛的人工智能领域(亦即机器学习)的一部分。它的基础是用来训练智能计算系统的基本原则,目标是让机器实现自学。这些基本原则之一与人类或机器所认为的“好”相关。对动物而言,进化论原则决定了它们应该做出优化生存、繁衍机会的决定。对人类社会来说,一个好的决定可能包括一些能够带来某种幸福表现的社会活动。而对于机器来说,比如无人驾驶汽车,决策的质量取决于自助车辆模仿人类司机行为的程度。

在特定语境中,是否能将作一个好决定所需要的知识翻译成计算机代码,并不一定显而易见。例如,一只老鼠了解它所在的环境,也本能知道往哪里嗅,如何移动它的腿,寻找食物或者配偶,躲避捕食者。没有程序员能详细描述这套行动指令的每一步,进而生成这些行为。但是,这些知识的确被编码进了这些啮齿类动物的大脑中。

在创建出可以训练自己的计算机之前,计算机科学家需要回答人类如何获取知识等基本问题。有些知识是天生的,但大多数是从经验中习得的。我们的知识本来就无法转化为计算机执行的一系列清晰步骤,但是,可以时常从样本和实践中习得。上世纪 50 年代依赖,研究人员已经在寻找并试着重新定义一些基本原则,这些基本原则允许动物或人——甚至机器——通过经验获取知识。机器学习旨在建立起学习步骤,也就是所谓的学习算法,它能让一台机器从给定的样本中学习。
image

图片来源 :Scientific American;机器之心汉化机器学习科学,在很大程度上是实验性的,因为不存在通用学习算法——没有能够让计算机学好每项给定任务的算法。任何知识获取的算法,都需要根据针对手头情况的数据和学习任务加以测试,是否能够识别日落,或者将英语翻译成乌尔都语。我们无法证明,在任何给定情况下,这个算法都始终、全面优于任何其他算法。

对于这个原则,人工智能研究人员已经有了正式的数学描述——“没有免费午餐”定理——定理证实,不存在能够解决每一个真实世界学习情境(learning situation)的算法。然而,人类行为显然与这一定理相悖。我们的大脑看起来具有相当的学习能力,能够让我们精通大量祖先无法掌握的技能(因为演化):下棋、架桥或者做人工智能研究。

这些能力表明,人类智能充分利用了关于世界的一般假设,这种假设可以被用作打造一种通用智能机器的灵感之源。正是出于这一原因,人工神经网络的开发者们已经将大脑作为设计智能系统的粗略模型。

大脑的主要计算单位是神经元细胞。每个神经元通过微小的细胞间隙 ( 轴突之间的突触间隙)向其他神经元发出信号。一个神经元倾向发出一个可以跨越间隙的信号的特性——以及那个信号的幅度——被称为一个突触强度(synapticstrength)。神经元一边“学习”,它的突触强度也在一边变大,因此,当受到电子脉冲刺激时,更容易向沿路相邻神经元发出信息。

脑科学对使用软件或硬件打造虚拟神经元的人工神经网络的兴起,产生了影响。人工智能子领域中的早期研究人员,以联结主义(connectionism)著称,认为这是理所当然的:通过逐渐改变神经元之间的链接以便神经活动模式可以捕捉到输入内容(比如一张图像或者一段对话),神经网络就能学会完成复杂任务。当这些网络接收到更加复杂的实例时,通过改变连接神经元之间的突触强度,学习过程就能继续下去,并最终更加准确地表征出内容,比如,日落的图像。

相关文章
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与未来教育:探索智能教学的新纪元
【10月更文挑战第16天】 在21世纪这个信息爆炸的时代,技术革新正以惊人的速度改变着我们的生活和工作方式。其中,人工智能(AI)作为引领变革的先锋力量,不仅重塑了工业、医疗、金融等多个行业的面貌,也正悄然渗透进教育领域,预示着一场关于学习与教学方式的革命。本文旨在探讨人工智能如何为未来教育带来前所未有的机遇与挑战,从个性化学习路径的定制到教育资源的优化分配,再到教师角色的转变,我们一同展望一个更加智能、高效且包容的教育新纪元。
|
4月前
|
传感器 数据采集 机器学习/深度学习
人工智能与环境保护:智能监测与治理的新策略
【9月更文挑战第21天】人工智能在环境保护中的应用,为智能监测与治理提供了新的策略和方法。通过实时数据采集与分析、智能预警与应急响应、精准化决策支持等技术的应用,AI正在引领一场革命性的变革。未来,随着技术的不断发展和应用场景的拓展,AI将在环境保护中发挥更加重要的作用,助力我们构建更加绿色、可持续的未来。让我们携手共进,共同迎接一个更加美好的明天。
|
2天前
|
机器学习/深度学习 数据采集 人工智能
人工智能在变更管理中的应用:变革的智能化之路
人工智能在变更管理中的应用:变革的智能化之路
24 13
|
28天前
|
机器学习/深度学习 人工智能 算法
人工智能与机器人的结合:智能化世界的未来
人工智能与机器人的结合:智能化世界的未来
194 32
|
1月前
|
机器学习/深度学习 人工智能 运维
人工智能在云计算中的运维优化:智能化的新时代
人工智能在云计算中的运维优化:智能化的新时代
183 49
|
2月前
|
人工智能 监控 物联网
深度探索人工智能与物联网的融合:构建未来智能生态系统###
在当今这个数据驱动的时代,人工智能(AI)与物联网(IoT)的深度融合正引领着一场前所未有的技术革命。本文旨在深入剖析这一融合背后的技术原理、探讨其在不同领域的应用实例及面临的挑战与机遇,为读者描绘一幅关于未来智能生态系统的宏伟蓝图。通过技术创新的视角,我们不仅揭示了AI与IoT结合的强大潜力,也展望了它们如何共同塑造一个更加高效、可持续且互联的世界。 ###
|
2月前
|
人工智能 自然语言处理 搜索推荐
人工智能与教育:个性化学习的未来
【10月更文挑战第31天】在科技飞速发展的今天,人工智能(AI)正深刻改变教育领域,尤其是个性化学习的兴起。本文探讨了AI如何通过智能分析、个性化推荐、智能辅导和虚拟现实技术推动个性化学习,分析了其带来的机遇与挑战,并展望了未来的发展前景。
|
2月前
|
机器学习/深度学习 存储 人工智能
政务部门人工智能OCR智能化升级:3大技术架构与4项核心功能解析
本项目针对政务服务数字化需求,建设智能文档处理平台,利用OCR、信息抽取和深度学习技术,实现文件自动解析、分类、比对与审核,提升效率与准确性。平台强调本地部署,确保数据安全,解决低质量扫描件、复杂表格等痛点,降低人工成本与错误率,助力智慧政务发展。
|
3月前
|
人工智能 搜索推荐 语音技术
人工智能与未来教育:重塑学习方式的双刃剑
在21世纪,人工智能(AI)技术正以前所未有的速度发展,深刻影响着社会的各个方面,其中包括教育领域。本文探讨了AI如何改变传统教育模式,提出其既带来积极影响也伴随着挑战的观点。通过分析具体案例和数据,文章旨在启发读者思考如何在保留人类教师不可替代价值的同时,有效利用AI技术优化教育体验。
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与未来教育:重塑学习体验
【10月更文挑战第20天】 在21世纪的今天,人工智能(AI)技术正以前所未有的速度改变着我们的生活、工作和学习方式。本文探讨了AI如何深刻影响未来教育的各个方面,从个性化学习路径的设计到智能辅导系统的开发,再到虚拟现实(VR)和增强现实(AR)技术在学习中的应用。通过分析这些变革,我们不仅能够预见一个更加高效、互动和包容的教育未来,而且还能理解这一过程中所面临的挑战和机遇。文章强调了持续创新的重要性,并呼吁教育工作者、技术开发者和政策制定者共同努力,以确保技术进步惠及每一个学习者。
79 2