t_text_all - 翻译文本接口对接全攻略

简介: t_text_all是企业级全能翻译接口,支持10+引擎智能路由、实时质量评估、术语定制、批量处理及HTML/Markdown等格式保持,集成本优化与多级缓存,兼顾高质、高效与低成本。(239字)

一、接口概览
1.1 接口简介
t_text_all是全能型翻译接口,支持多引擎、多格式、多场景的文本翻译,集成了智能路由、质量评估、术语定制、批量处理等高级功能,是企业级翻译解决方案的核心接口。
1.2 核心特性
✅ 多引擎支持:集成10+主流翻译引擎
✅ 智能路由:自动选择最佳翻译引擎
✅ 质量评估:实时评估翻译质量
✅ 术语定制:支持专业领域术语库
✅ 批量处理:高效处理大规模文本
✅ 格式保持:HTML/Markdown/JSON等格式翻译
✅ 实时监控:翻译质量与性能监控
✅ 成本优化:智能成本控制策略
二、准备工作
2.1 环境配置

requirements.txt

requests>=2.28.0
python-dotenv>=1.0.0
pydantic>=2.0.0
aiohttp>=3.8.0
redis>=4.5.0
openai>=1.0.0
google-cloud-translate>=3.0.0
tencentcloud-sdk-python>=3.0.0
alibabacloud_tea_openapi>=0.3.0
numpy>=1.21.0
sentencepiece>=0.1.0
transformers>=4.0.0
2.2 认证配置

config.py

import os
from dotenv import load_dotenv
from typing import Dict, Any, List

load_dotenv()

class TranslationConfig:

# 翻译服务配置
TRANSLATION_SERVICES = {
    'baidu': {
        'app_id': os.getenv('BAIDU_TRANSLATE_APP_ID'),
        'app_key': os.getenv('BAIDU_TRANSLATE_APP_KEY'),
        'api_base': 'https://fanyi-api.baidu.com/api/trans/vip/translate',
        'enabled': True,
        'priority': 3
    },
    'tencent': {
        'secret_id': os.getenv('TENCENT_TRANSLATE_SECRET_ID'),
        'secret_key': os.getenv('TENCENT_TRANSLATE_SECRET_KEY'),
        'api_base': 'https://tmt.tencentcloudapi.com',
        'enabled': True,
        'priority': 2
    },
    'aliyun': {
        'access_key_id': os.getenv('ALIYUN_TRANSLATE_ACCESS_KEY_ID'),
        'access_key_secret': os.getenv('ALIYUN_TRANSLATE_ACCESS_KEY_SECRET'),
        'api_base': 'https://mt.cn-hangzhou.aliyuncs.com',
        'enabled': True,
        'priority': 3
    },
    'youdao': {
        'app_key': os.getenv('YOUDAO_TRANSLATE_APP_KEY'),
        'app_secret': os.getenv('YOUDAO_TRANSLATE_APP_SECRET'),
        'api_base': 'https://openapi.youdao.com/api',
        'enabled': True,
        'priority': 4
    },
    'google': {
        'api_key': os.getenv('GOOGLE_TRANSLATE_API_KEY'),
        'api_base': 'https://translation.googleapis.com/language/translate/v2',
        'enabled': True,
        'priority': 1
    },
    'openai': {
        'api_key': os.getenv('OPENAI_API_KEY'),
        'api_base': 'https://api.openai.com/v1/chat/completions',
        'enabled': True,
        'priority': 1
    },
    'azure': {
        'api_key': os.getenv('AZURE_TRANSLATE_API_KEY'),
        'endpoint': os.getenv('AZURE_TRANSLATE_ENDPOINT'),
        'location': os.getenv('AZURE_TRANSLATE_LOCATION'),
        'enabled': True,
        'priority': 2
    },
    'deepl': {
        'api_key': os.getenv('DEEPL_API_KEY'),
        'api_base': 'https://api-free.deepl.com/v2/translate',
        'enabled': True,
        'priority': 1
    },
    'volcengine': {
        'access_key': os.getenv('VOLCENGINE_ACCESS_KEY'),
        'secret_key': os.getenv('VOLCENGINE_SECRET_KEY'),
        'api_base': 'https://open.volcengineapi.com',
        'enabled': True,
        'priority': 4
    },
    'local': {
        'model_path': os.getenv('LOCAL_TRANSLATION_MODEL_PATH'),
        'enabled': False,
        'priority': 5
    }
}

# 请求配置
REQUEST_TIMEOUT = 30
MAX_TEXT_LENGTH = 5000
BATCH_SIZE = 50
MAX_CONCURRENT_REQUESTS = 10

# 缓存配置
CACHE_TTL = 86400
REDIS_URL = os.getenv('REDIS_URL', 'redis://localhost:6379/0')

# 质量配置
MIN_QUALITY_SCORE = 0.7
MAX_RETRIES = 3
FALLBACK_STRATEGY = 'quality'  # quality/cost/speed

# 成本配置
COST_LIMITS = {
    'daily': 100.0,  # 每日成本限制
    'monthly': 1000.0
}

三、接口详解
3.1 接口地址
POST /v2/translate/all
3.2 请求参数详解
基础参数
参数名

类型

必填

说明

示例

text

string/list

待翻译文本

"Hello World"

source_lang

string

源语言

"en"

target_lang

string

目标语言

"zh"

format

string

文本格式

"text/html/markdown/json"
高级参数
参数名

类型

必填

说明

示例

engine

string

指定引擎

"auto/baidu/google/openai"

strategy

string

选择策略

"quality/cost/speed/auto"

glossary_id

string

术语库ID

"glossary_001"

domain

string

专业领域

"finance/medical/legal"

quality_threshold

float

质量阈值

0.8

preserve_format

bool

保持格式

true

batch_mode

bool

批量模式

true

fallback

bool

降级处理

true

retry_count

int

重试次数

3
3.3 返回参数详解
参数名

类型

说明

示例

success

bool

是否成功

true

code

int

状态码

200

message

string

消息

"成功"

data

object

翻译数据

-

translated_text

string/list

译文

"你好世界"

source_text

string/list

原文

"Hello World"

engine_used

string

使用引擎

"google"

quality_score

float

质量评分

0.92

confidence

float

置信度

0.95

translation_time

float

翻译耗时

0.345

cost

float

翻译成本

0.002

glossary_matches

list

术语匹配

["API", "接口"]
四、完整代码实现
4.1 核心类实现
import requests
import time
import hashlib
import hmac
import json
import random
import asyncio
import aiohttp
import numpy as np
from typing import Dict, Any, List, Optional, Union, Tuple
from datetime import datetime, timedelta
from dataclasses import dataclass, field
from urllib.parse import urlencode
import redis
from openai import OpenAI
from google.cloud import translate_v2 as google_translate
from tencentcloud.common import credential
from tencentcloud.tmt.v20180321 import tmt_client, models
from alibabacloud_tea_openapi import models as aliyun_models
from alibabacloud_mt20180807.client import Client as AliyunClient
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import sentencepiece as spm

@dataclass
class TranslationRequest:
"""翻译请求"""
text: Union[str, List[str]]
source_lang: str
target_lang: str
format: str = "text"
domain: Optional[str] = None
glossary_id: Optional[str] = None
engine: str = "auto"
strategy: str = "auto"
quality_threshold: float = 0.7
preserve_format: bool = True
batch_mode: bool = True
fallback: bool = True
retry_count: int = 3
custom_params: Dict[str, Any] = field(default_factory=dict)

@dataclass
class TranslationResult:
"""翻译结果"""
success: bool
code: int
message: str
data: Dict[str, Any]
source_text: Union[str, List[str]]
translated_text: Union[str, List[str]]
source_lang: str
target_lang: str
engine_used: str
quality_score: Optional[float] = None
confidence: Optional[float] = None
translation_time: float = 0.0
cost: float = 0.0
glossary_matches: Optional[List[str]] = None
engine_ranking: Optional[List[Dict[str, Any]]] = None
warnings: Optional[List[str]] = None

@dataclass
class EnginePerformance:
"""引擎性能指标"""
engine: str
total_requests: int = 0
success_requests: int = 0
total_time: float = 0.0
avg_time: float = 0.0
success_rate: float = 0.0
avg_quality: float = 0.0
total_cost: float = 0.0
last_used: Optional[datetime] = None

class UniversalTranslationAPI:
"""全能型翻译API"""

def __init__(self, config: Dict[str, Any], redis_client=None):
    self.config = config
    self.redis = redis_client
    self.session = requests.Session()
    self.async_session = None
    self.engine_performance = {}
    self.quality_evaluator = TranslationQualityEvaluator()
    self.glossary_manager = GlossaryManager(redis_client)
    self.cost_tracker = CostTracker()
    self.engine_router = EngineRouter(config)

    # 初始化各引擎客户端
    self._init_engines()

def _init_engines(self):
    """初始化各翻译引擎"""
    self.engine_clients = {}
    service_config = self.config.get('TRANSLATION_SERVICES', {})

    # 百度翻译
    if service_config.get('baidu', {}).get('enabled'):
        self.engine_clients['baidu'] = BaiduTranslationClient(service_config['baidu'])

    # 腾讯翻译
    if service_config.get('tencent', {}).get('enabled'):
        self.engine_clients['tencent'] = TencentTranslationClient(service_config['tencent'])

    # 阿里云翻译
    if service_config.get('aliyun', {}).get('enabled'):
        self.engine_clients['aliyun'] = AliyunTranslationClient(service_config['aliyun'])

    # Google翻译
    if service_config.get('google', {}).get('enabled'):
        self.engine_clients['google'] = GoogleTranslationClient(service_config['google'])

    # OpenAI翻译
    if service_config.get('openai', {}).get('enabled'):
        self.engine_clients['openai'] = OpenAITranslationClient(service_config['openai'])

    # Azure翻译
    if service_config.get('azure', {}).get('enabled'):
        self.engine_clients['azure'] = AzureTranslationClient(service_config['azure'])

    # DeepL翻译
    if service_config.get('deepl', {}).get('enabled'):
        self.engine_clients['deepl'] = DeepLTranslationClient(service_config['deepl'])

    # 火山翻译
    if service_config.get('volcengine', {}).get('enabled'):
        self.engine_clients['volcengine'] = VolcengineTranslationClient(service_config['volcengine'])

    # 本地模型
    if service_config.get('local', {}).get('enabled'):
        self.engine_clients['local'] = LocalTranslationClient(service_config['local'])

def translate(
    self,
    text: Union[str, List[str]],
    source_lang: str,
    target_lang: str,
    **kwargs
) -> TranslationResult:
    """
    全能翻译接口

    Args:
        text: 待翻译文本
        source_lang: 源语言
        target_lang: 目标语言
        **kwargs: 其他参数

    Returns:
        翻译结果
    """
    start_time = time.time()

    # 构建请求
    request = TranslationRequest(
        text=text,
        source_lang=source_lang,
        target_lang=target_lang,
        **kwargs
    )

    # 检查缓存
    cache_key = self._get_cache_key(request)
    if self.redis:
        cached = self.redis.get(cache_key)
        if cached:
            data = json.loads(cached)
            return TranslationResult(**data)

    try:
        # 智能路由选择引擎
        selected_engines = self.engine_router.select_engines(request)

        # 执行翻译
        result = self._execute_translation(request, selected_engines)
        result.translation_time = time.time() - start_time

        # 计算成本
        result.cost = self.cost_tracker.calculate_cost(result.engine_used, len(str(text)))

        # 缓存结果
        if self.redis and result.success:
            self.redis.setex(
                cache_key,
                self.config.get('CACHE_TTL', 86400),
                json.dumps(result.__dict__)
            )

        # 更新引擎性能指标
        self._update_engine_performance(result.engine_used, result)

        return result

    except Exception as e:
        translation_time = time.time() - start_time
        return TranslationResult(
            success=False,
            code=500,
            message=f"翻译失败: {str(e)}",
            data={},
            source_text=text,
            translated_text=[] if isinstance(text, list) else "",
            source_lang=source_lang,
            target_lang=target_lang,
            engine_used="unknown",
            translation_time=translation_time,
            cost=0.0
        )

def _execute_translation(
    self,
    request: TranslationRequest,
    selected_engines: List[str]
) -> TranslationResult:
    """执行翻译"""
    # 应用术语库
    if request.glossary_id:
        if isinstance(request.text, str):
            request.text = self.glossary_manager.apply_glossary(request.text, request.glossary_id)
        else:
            request.text = [self.glossary_manager.apply_glossary(t, request.glossary_id) for t in request.text]

    # 尝试选择的引擎
    best_result = None
    engine_ranking = []

    for engine in selected_engines:
        if engine not in self.engine_clients:
            continue

        try:
            # 调用引擎
            engine_result = self.engine_clients[engine].translate(request)

            # 质量评估
            if engine_result.success:
                quality_score = self.quality_evaluator.evaluate(
                    request.text, 
                    engine_result.translated_text,
                    request.source_lang,
                    request.target_lang
                )
                engine_result.quality_score = quality_score
                engine_result.confidence = quality_score

                # 记录引擎排名
                engine_ranking.append({
                    'engine': engine,
                    'quality_score': quality_score,
                    'response_time': engine_result.translation_time
                })

                # 检查质量阈值
                if quality_score >= request.quality_threshold:
                    best_result = engine_result
                    best_result.engine_ranking = engine_ranking
                    break
                elif best_result is None or quality_score > best_result.quality_score:
                    best_result = engine_result

        except Exception as e:
            print(f"引擎 {engine} 翻译失败: {e}")
            continue

    # 处理结果
    if best_result is not None:
        best_result.engine_ranking = engine_ranking
        return best_result
    else:
        # 所有引擎都失败
        return TranslationResult(
            success=False,
            code=500,
            message="所有翻译引擎都失败了",
            data={},
            source_text=request.text,
            translated_text=[] if isinstance(request.text, list) else "",
            source_lang=request.source_lang,
            target_lang=request.target_lang,
            engine_used="none",
            translation_time=0.0,
            cost=0.0
        )

def batch_translate(
    self,
    texts: List[str],
    source_lang: str,
    target_lang: str,
    **kwargs
) -> List[TranslationResult]:
    """批量翻译"""
    results = []
    batch_size = self.config.get('BATCH_SIZE', 50)

    for i in range(0, len(texts), batch_size):
        batch_texts = texts[i:i+batch_size]
        result = self.translate(batch_texts, source_lang, target_lang, **kwargs)
        results.append(result)

        # 避免频率限制
        time.sleep(0.1)

    return results

async def translate_async(
    self,
    text: Union[str, List[str]],
    source_lang: str,
    target_lang: str,
    **kwargs
) -> TranslationResult:
    """异步翻译"""
    if self.async_session is None:
        self.async_session = aiohttp.ClientSession()

    # 异步实现逻辑
    # 这里可以并行调用多个引擎进行质量对比
    pass

def _get_cache_key(self, request: TranslationRequest) -> str:
    """生成缓存键"""
    import hashlib

    text_str = request.text if isinstance(request.text, str) else '|'.join(request.text)
    key_data = f"{text_str}:{request.source_lang}:{request.target_lang}:{request.engine}:{request.strategy}:{request.glossary_id or ''}"

    return f"translation:{hashlib.md5(key_data.encode()).hexdigest()}"

def _update_engine_performance(self, engine: str, result: TranslationResult):
    """更新引擎性能指标"""
    if engine not in self.engine_performance:
        self.engine_performance[engine] = EnginePerformance(engine=engine)

    perf = self.engine_performance[engine]
    perf.total_requests += 1
    perf.last_used = datetime.now()

    if result.success:
        perf.success_requests += 1
        perf.total_time += result.translation_time
        perf.avg_time = perf.total_time / perf.success_requests
        perf.success_rate = perf.success_requests / perf.total_requests

        if result.quality_score:
            perf.avg_quality = (
                perf.avg_quality * (perf.success_requests - 1) + result.quality_score
            ) / perf.success_requests

        perf.total_cost += result.cost

各引擎客户端实现

class BaiduTranslationClient:
"""百度翻译客户端"""

def __init__(self, config: Dict[str, Any]):
    self.config = config
    self.session = requests.Session()

def translate(self, request: TranslationRequest) -> TranslationResult:
    """百度翻译"""
    try:
        # 构建请求参数
        params = {
            'q': request.text if isinstance(request.text, str) else '\n'.join(request.text),
            'from': request.source_lang,
            'to': request.target_lang,
            'appid': self.config['app_id']
        }

        # 生成签名
        salt = str(random.randint(32768, 65536))
        sign_str = self.config['app_id'] + params['q'] + salt + self.config['app_key']
        sign = hashlib.md5(sign_str.encode('utf-8')).hexdigest()
        params['salt'] = salt
        params['sign'] = sign

        # 发送请求
        start_time = time.time()
        response = self.session.post(self.config['api_base'], data=params, timeout=30)
        translation_time = time.time() - start_time

        if response.status_code == 200:
            data = response.json()
            if 'trans_result' in data:
                trans_result = data['trans_result']
                if isinstance(request.text, str):
                    translated_text = trans_result[0]['dst']
                else:
                    translated_text = [item['dst'] for item in trans_result]

                return TranslationResult(
                    success=True,
                    code=200,
                    message="成功",
                    data=data,
                    source_text=request.text,
                    translated_text=translated_text,
                    source_lang=request.source_lang,
                    target_lang=request.target_lang,
                    engine_used="baidu",
                    translation_time=translation_time
                )
            else:
                error_code = data.get('error_code', 0)
                error_msg = data.get('error_msg', '未知错误')
                return TranslationResult(
                    success=False,
                    code=error_code,
                    message=error_msg,
                    data=data,
                    source_text=request.text,
                    translated_text=[] if isinstance(request.text, list) else "",
                    source_lang=request.source_lang,
                    target_lang=request.target_lang,
                    engine_used="baidu",
                    translation_time=translation_time
                )
        else:
            return TranslationResult(
                success=False,
                code=response.status_code,
                message=f"HTTP {response.status_code}",
                data={},
                source_text=request.text,
                translated_text=[] if isinstance(request.text, list) else "",
                source_lang=request.source_lang,
                target_lang=request.target_lang,
                engine_used="baidu",
                translation_time=translation_time
            )

    except Exception as e:
        return TranslationResult(
            success=False,
            code=500,
            message=f"百度翻译失败: {str(e)}",
            data={},
            source_text=request.text,
            translated_text=[] if isinstance(request.text, list) else "",
            source_lang=request.source_lang,
            target_lang=request.target_lang,
            engine_used="baidu",
            translation_time=0.0
        )

class GoogleTranslationClient:
"""Google翻译客户端"""

def __init__(self, config: Dict[str, Any]):
    self.config = config
    self.client = google_translate.Client()

def translate(self, request: TranslationRequest) -> TranslationResult:
    """Google翻译"""
    try:
        start_time = time.time()

        if isinstance(request.text, str):
            result = self.client.translate(
                request.text,
                source_language=request.source_lang,
                target_language=request.target_lang
            )
            translated_text = result['translatedText']
        else:
            results = self.client.translate(
                request.text,
                source_language=request.source_lang,
                target_language=request.target_lang
            )
            translated_text = [result['translatedText'] for result in results]

        translation_time = time.time() - start_time

        return TranslationResult(
            success=True,
            code=200,
            message="成功",
            data={},
            source_text=request.text,
            translated_text=translated_text,
            source_lang=request.source_lang,
            target_lang=request.target_lang,
            engine_used="google",
            translation_time=translation_time
        )

    except Exception as e:
        return TranslationResult(
            success=False,
            code=500,
            message=f"Google翻译失败: {str(e)}",
            data={},
            source_text=request.text,
            translated_text=[] if isinstance(request.text, list) else "",
            source_lang=request.source_lang,
            target_lang=request.target_lang,
            engine_used="google",
            translation_time=0.0
        )

class OpenAITranslationClient:
"""OpenAI翻译客户端"""

def __init__(self, config: Dict[str, Any]):
    self.config = config
    self.client = OpenAI(api_key=config['api_key'])

def translate(self, request: TranslationRequest) -> TranslationResult:
    """OpenAI翻译"""
    try:
        # 构建提示词
        system_prompt = f"""
        你是一位专业的翻译专家,请将{request.source_lang}翻译成{request.target_lang}。
        保持原文格式和语义准确,专业术语要翻译正确。
        """

        if isinstance(request.text, str):
            user_content = f"请翻译以下文本:\n\n{request.text}"
        else:
            user_content = f"请翻译以下文本列表:\n\n" + '\n'.join([f"{i+1}. {text}" for i, text in enumerate(request.text)])

        start_time = time.time()

        # 调用OpenAI API
        response = self.client.chat.completions.create(
            model="gpt-3.5-turbo",
            messages=[
                {"role": "system", "content": system_prompt},
                {"role": "user", "content": user_content}
            ],
            temperature=0.1
        )

        translation_time = time.time() - start_time
        translated_content = response.choices[0].message.content

        if isinstance(request.text, str):
            translated_text = translated_content.strip()
        else:
            # 解析批量翻译结果
            translated_text = []
            lines = translated_content.strip().split('\n')
            for line in lines:
                if '. ' in line:
                    text = line.split('. ', 1)[1]
                    translated_text.append(text)
                else:
                    translated_text.append(line)

        return TranslationResult(
            success=True,
            code=200,
            message="成功",
            data=response.to_dict(),
            source_text=request.text,
            translated_text=translated_text,
            source_lang=request.source_lang,
            target_lang=request.target_lang,
            engine_used="openai",
            translation_time=translation_time
        )

    except Exception as e:
        return TranslationResult(
            success=False,
            code=500,
            message=f"OpenAI翻译失败: {str(e)}",
            data={},
            source_text=request.text,
            translated_text=[] if isinstance(request.text, list) else "",
            source_lang=request.source_lang,
            target_lang=request.target_lang,
            engine_used="openai",
            translation_time=0.0
        )

其他引擎客户端实现类似...

4.2 智能路由系统
class EngineRouter:
"""引擎智能路由器"""

def __init__(self, config: Dict[str, Any]):
    self.config = config
    self.engine_capabilities = self._build_engine_capabilities()

def _build_engine_capabilities(self) -> Dict[str, Dict[str, Any]]:
    """构建引擎能力矩阵"""
    return {
        'baidu': {
            'languages': ['zh', 'en', 'ja', 'ko', 'fr', 'de', 'ru', 'es', 'ar', 'pt'],
            'quality': 0.85,
            'speed': 0.8,
            'cost': 0.001,
            'max_length': 5000,
            'batch_support': True
        },
        'google': {
            'languages': ['zh', 'en', 'ja', 'ko', 'fr', 'de', 'ru', 'es', 'ar', 'pt', 'it', 'nl'],
            'quality': 0.92,
            'speed': 0.9,
            'cost': 0.003,
            'max_length': 30000,
            'batch_support': True
        },
        'openai': {
            'languages': ['zh', 'en', 'ja', 'ko', 'fr', 'de', 'ru', 'es', 'ar', 'pt', 'it', 'nl'],
            'quality': 0.95,
            'speed': 0.7,
            'cost': 0.01,
            'max_length': 4000,
            'batch_support': True
        },
        'tencent': {
            'languages': ['zh', 'en', 'ja', 'ko', 'fr', 'de', 'ru', 'es'],
            'quality': 0.82,
            'speed': 0.85,
            'cost': 0.002,
            'max_length': 2000,
            'batch_support': True
        },
        'deepl': {
            'languages': ['zh', 'en', 'ja', 'ko', 'fr', 'de', 'ru', 'es', 'it', 'nl', 'pl'],
            'quality': 0.94,
            'speed': 0.88,
            'cost': 0.004,
            'max_length': 5000,
            'batch_support': True
        }
    }

def select_engines(self, request: TranslationRequest) -> List[str]:
    """选择适合的翻译引擎"""
    available_engines = self._get_available_engines(request)

    if request.engine != 'auto':
        if request.engine in available_engines:
            return [request.engine]
        else:
            return available_engines

    # 根据策略选择引擎
    if request.strategy == 'quality':
        return self._select_by_quality(available_engines)
    elif request.strategy == 'cost':
        return self._select_by_cost(available_engines)
    elif request.strategy == 'speed':
        return self._select_by_speed(available_engines)
    else:  # auto
        return self._select_by_auto(available_engines, request)

def _get_available_engines(self, request: TranslationRequest) -> List[str]:
    """获取可用的引擎列表"""
    available = []

    for engine, capabilities in self.engine_capabilities.items():
        # 检查语言支持
        if (request.source_lang in capabilities['languages'] and 
            request.target_lang in capabilities['languages']):

            # 检查文本长度
            text_length = len(str(request.text))
            if text_length <= capabilities['max_length']:
                available.append(engine)

    return available

def _select_by_quality(self, engines: List[str]) -> List[str]:
    """按质量选择引擎"""
    scored_engines = []
    for engine in engines:
        score = self.engine_capabilities[engine]['quality']
        scored_engines.append((engine, score))

    scored_engines.sort(key=lambda x: x[1], reverse=True)
    return [engine for engine, score in scored_engines]

def _select_by_cost(self, engines: List[str]) -> List[str]:
    """按成本选择引擎"""
    scored_engines = []
    for engine in engines:
        score = 1.0 / self.engine_capabilities[engine]['cost']  # 成本越低分数越高
        scored_engines.append((engine, score))

    scored_engines.sort(key=lambda x: x[1], reverse=True)
    return [engine for engine, score in scored_engines]

def _select_by_auto(self, engines: List[str], request: TranslationRequest) -> List[str]:
    """自动选择引擎"""
    # 综合考虑质量、成本、速度
    scored_engines = []

    for engine in engines:
        capabilities = self.engine_capabilities[engine]

        # 计算综合得分
        quality_score = capabilities['quality'] * 0.5
        cost_score = (1.0 / capabilities['cost']) * 0.3
        speed_score = capabilities['speed'] * 0.2

        total_score = quality_score + cost_score + speed_score
        scored_engines.append((engine, total_score))

    scored_engines.sort(key=lambda x: x[1], reverse=True)
    return [engine for engine, score in scored_engines]

4.3 质量评估系统
class TranslationQualityEvaluator:
"""翻译质量评估器"""

def __init__(self):
    self.metrics = ['accuracy', 'fluency', 'terminology', 'style']
    self.models = self._load_models()

def _load_models(self):
    """加载质量评估模型"""
    try:
        # 加载预训练模型进行质量评估
        # 这里使用简化实现,实际可以使用BERTScore等先进方法
        return {}
    except:
        return {}

def evaluate(
    self,
    source_text: Union[str, List[str]],
    translated_text: Union[str, List[str]],
    source_lang: str,
    target_lang: str
) -> float:
    """评估翻译质量"""
    if isinstance(source_text, list) and isinstance(translated_text, list):
        # 批量评估
        scores = []
        for src, tgt in zip(source_text, translated_text):
            score = self._evaluate_single(src, tgt, source_lang, target_lang)
            scores.append(score)
        return sum(scores) / len(scores) if scores else 0.0
    else:
        # 单文本评估
        return self._evaluate_single(source_text, translated_text, source_lang, target_lang)

def _evaluate_single(
    self,
    source_text: str,
    translated_text: str,
    source_lang: str,
    target_lang: str
) -> float:
    """评估单条翻译质量"""
    if len(source_text.strip()) == 0 or len(translated_text.strip()) == 0:
        return 0.0

    # 计算多个维度的评分
    accuracy_score = self._calculate_accuracy_score(source_text, translated_text)
    fluency_score = self._calculate_fluency_score(translated_text, target_lang)
    terminology_score = self._calculate_terminology_score(source_text, translated_text)
    style_score = self._calculate_style_score(source_text, translated_text)

    # 加权平均
    weights = [0.4, 0.3, 0.2, 0.1]  # 准确性权重最高
    scores = [accuracy_score, fluency_score, terminology_score, style_score]

    return sum(score * weight for score, weight in zip(scores, weights))

def _calculate_accuracy_score(self, source: str, target: str) -> float:
    """计算准确性评分"""
    # 基于BLEU评分原理的简化实现
    import re

    # 分词
    source_words = re.findall(r'\w+', source.lower())
    target_words = re.findall(r'\w+', target.lower())

    if len(source_words) == 0 or len(target_words) == 0:
        return 0.0

    # 计算词重叠度
    common_words = set(source_words) & set(target_words)
    precision = len(common_words) / len(target_words) if len(target_words) > 0 else 0.0
    recall = len(common_words) / len(source_words) if len(source_words) > 0 else 0.0

    # F1分数
    if precision + recall > 0:
        f1_score = 2 * precision * recall / (precision + recall)
    else:
        f1_score = 0.0

    return min(f1_score * 2, 1.0)  # 归一化到0-1

def _calculate_fluency_score(self, text: str, lang: str) -> float:
    """计算流畅性评分"""
    if len(text.strip()) == 0:
        return 0.0

    # 基于句子结构和标点的简单评估
    import re

    # 检查句子完整性
    sentence_endings = ['.', '!', '?', '。', '!', '?']
    has_ending = any(text.endswith(char) for char in sentence_endings)

    # 检查句子长度合理性
    word_count = len(re.findall(r'\w+', text))
    if word_count < 3:
        length_score = 0.6
    elif word_count < 20:
        length_score = 0.8
    else:
        length_score = 0.9

    # 检查标点符号使用
    punctuation_count = len(re.findall(r'[.!?,;:,。!?;:]', text))
    if word_count > 0:
        punctuation_score = min(punctuation_count / (word_count / 10), 1.0)
    else:
        punctuation_score = 0.0

    # 综合评分
    ending_score = 0.8 if has_ending else 0.6
    fluency_score = (ending_score + length_score + punctuation_score) / 3

    return min(fluency_score, 1.0)

def _calculate_terminology_score(self, source: str, target: str) -> float:
    """计算术语一致性评分"""
    # 这里可以集成术语库进行专业评估
    # 简化实现:检查数字、专有名词的一致性
    import re

    source_numbers = re.findall(r'\d+', source)
    target_numbers = re.findall(r'\d+', target)

    if len(source_numbers) == 0:
        return 0.8  # 没有数字,默认分数

    # 检查数字是否匹配
    matched_numbers = 0
    for num in source_numbers:
        if num in target_numbers:
            matched_numbers += 1

    terminology_score = matched_numbers / len(source_numbers) if len(source_numbers) > 0 else 1.0
    return terminology_score

def _calculate_style_score(self, source: str, target: str) -> float:
    """计算风格匹配度评分"""
    # 简化实现:检查语气和格式一致性
    source_uppercase = sum(1 for c in source if c.isupper())
    target_uppercase = sum(1 for c in target if c.isupper())

    source_length = len(source)
    target_length = len(target)

    if source_length == 0 or target_length == 0:
        return 0.0

    # 大写比例一致性
    uppercase_ratio_source = source_uppercase / source_length
    uppercase_ratio_target = target_uppercase / target_length
    uppercase_score = 1.0 - abs(uppercase_ratio_source - uppercase_ratio_target)

    # 长度比例一致性
    length_ratio = min(source_length, target_length) / max(source_length, target_length)

    return (uppercase_score + length_ratio) / 2

4.4 术语库管理系统
class GlossaryManager:
"""术语库管理器"""

def __init__(self, redis_client):
    self.redis = redis_client
    self.glossary_prefix = "glossary:"

def create_glossary(self, glossary_id: str, terms: Dict[str, str]) -> bool:
    """创建术语库"""
    try:
        glossary_key = f"{self.glossary_prefix}{glossary_id}"
        self.redis.hset(glossary_key, mapping=terms)
        return True
    except Exception as e:
        print(f"创建术语库失败: {e}")
        return False

def get_glossary_terms(self, glossary_id: str) -> Dict[str, str]:
    """获取术语库"""
    glossary_key = f"{self.glossary_prefix}{glossary_id}"
    terms = self.redis.hgetall(glossary_key)
    return {k.decode(): v.decode() for k, v in terms.items()} if terms else {}

def apply_glossary(self, text: str, glossary_id: str) -> str:
    """应用术语库"""
    terms = self.get_glossary_terms(glossary_id)

    for source, target in terms.items():
        # 使用正则表达式进行精确匹配
        import re
        text = re.sub(rf'\b{re.escape(source)}\b', target, text, flags=re.IGNORECASE)

    return text

def batch_apply_glossary(self, texts: List[str], glossary_id: str) -> List[str]:
    """批量应用术语库"""
    terms = self.get_glossary_terms(glossary_id)
    results = []

    for text in texts:
        processed_text = self.apply_glossary(text, glossary_id)
        results.append(processed_text)

    return results

def detect_glossary_matches(self, text: str, glossary_id: str) -> List[str]:
    """检测术语匹配"""
    terms = self.get_glossary_terms(glossary_id)
    matches = []

    for term in terms.keys():
        if term.lower() in text.lower():
            matches.append(term)

    return matches

4.5 成本跟踪系统
class CostTracker:
"""成本跟踪系统"""

def __init__(self):
    self.cost_records = {}
    self.engine_costs = {
        'baidu': 0.001,    # 元/字符
        'tencent': 0.002,  # 元/字符
        'aliyun': 0.0015,  # 元/字符
        'youdao': 0.002,   # 元/字符
        'google': 0.003,   # 元/字符
        'openai': 0.01,    # 元/字符
        'azure': 0.0025,   # 元/字符
        'deepl': 0.004,    # 元/字符
        'volcengine': 0.002,  # 元/字符
        'local': 0.0001    # 元/字符
    }

def calculate_cost(self, engine: str, text_length: int) -> float:
    """计算翻译成本"""
    unit_cost = self.engine_costs.get(engine, 0.001)
    return unit_cost * text_length

def record_cost(self, engine: str, cost: float, timestamp: datetime = None):
    """记录成本"""
    if timestamp is None:
        timestamp = datetime.now()

    date_key = timestamp.strftime('%Y-%m-%d')
    month_key = timestamp.strftime('%Y-%m')

    # 记录每日成本
    if date_key not in self.cost_records:
        self.cost_records[date_key] = {}

    if engine not in self.cost_records[date_key]:
        self.cost_records[date_key][engine] = 0.0

    self.cost_records[date_key][engine] += cost

    # 记录月度成本
    if month_key not in self.cost_records:
        self.cost_records[month_key] = {}

    if engine not in self.cost_records[month_key]:
        self.cost_records[month_key][engine] = 0.0

    self.cost_records[month_key][engine] += cost

def get_daily_cost(self, date: str = None) -> float:
    """获取指定日期的总成本"""
    if date is None:
        date = datetime.now().strftime('%Y-%m-%d')

    if date in self.cost_records:
        return sum(self.cost_records[date].values())
    return 0.0

def get_monthly_cost(self, month: str = None) -> float:
    """获取指定月份的总成本"""
    if month is None:
        month = datetime.now().strftime('%Y-%m')

    if month in self.cost_records:
        return sum(self.cost_records[month].values())
    return 0.0

def check_cost_limit(self, limit_type: str = 'daily', limit_amount: float = 100.0) -> bool:
    """检查成本限制"""
    if limit_type == 'daily':
        current_cost = self.get_daily_cost()
    elif limit_type == 'monthly':
        current_cost = self.get_monthly_cost()
    else:
        return True

    return current_cost < limit_amount

五、使用示例
5.1 基础使用

初始化API

api = UniversalTranslationAPI(TranslationConfig, redis_client)

简单翻译

result = api.translate(
text="Hello, world! This is a translation example.",
source_lang="en",
target_lang="zh"
)

if result.success:
print(f"原文: {result.source_text}")
print(f"译文: {result.translated_text}")
print(f"使用引擎: {result.engine_used}")
print(f"质量评分: {result.quality_score:.2f}")
print(f"翻译耗时: {result.translation_time:.3f}s")
print(f"翻译成本: ¥{result.cost:.4f}")

批量翻译

texts = [
"Good morning!",
"How are you today?",
"Have a nice day!",
"Thank you very much!"
]

results = api.batch_translate(texts, "en", "zh")

for i, result in enumerate(results):
if result.success:
print(f"文本{i+1}: {result.translated_text}")

指定引擎

result = api.translate(
text="The quick brown fox jumps over the lazy dog.",
source_lang="en",
target_lang="zh",
engine="openai"
)
5.2 高级功能

质量优先翻译

result = api.translate(
text="This is a technical document about artificial intelligence.",
source_lang="en",
target_lang="zh",
strategy="quality",
quality_threshold=0.9
)

成本优先翻译

result = api.translate(
text="A simple greeting message for our application.",
source_lang="en",
target_lang="zh",
strategy="cost"
)

使用术语库

api.glossary_manager.create_glossary("tech_glossary", {
"API": "应用程序接口",
"AI": "人工智能",
"Machine Learning": "机器学习",
"Cloud Computing": "云计算"
})

result = api.translate(
text="We use AI and Machine Learning to build better APIs.",
source_lang="en",
target_lang="zh",
glossary_id="tech_glossary"
)

获取引擎性能报告

performance = api.engine_performance
for engine, perf in performance.items():
print(f"{engine}: 成功率{perf.success_rate:.1%}, 平均质量{perf.avg_quality:.2f}, 总成本¥{perf.total_cost:.2f}")

检查成本限制

if api.cost_tracker.check_cost_limit('daily', 50.0):
print("今日成本在限制范围内")
else:
print("今日成本已超限")
六、性能优化
6.1 缓存优化
class SmartTranslationCache:
"""智能翻译缓存"""

def __init__(self, redis_client):
    self.redis = redis_client
    self.memory_cache = {}
    self.memory_ttl = 300  # 5分钟
    self.redis_ttl = 86400  # 24小时

def get_translation(self, cache_key: str):
    """获取翻译缓存"""
    # 检查内存缓存
    if cache_key in self.memory_cache:
        data, expire_time = self.memory_cache[cache_key]
        if time.time() < expire_time:
            return data

    # 检查Redis缓存
    if self.redis:
        cached = self.redis.get(cache_key)
        if cached:
            data = json.loads(cached)
            # 更新内存缓存
            self.memory_cache[cache_key] = (data, time.time() + self.memory_ttl)
            return data

    return None

def set_translation(self, cache_key: str, data: Dict[str, Any], ttl: int = None):
    """设置翻译缓存"""
    if ttl is None:
        ttl = self.redis_ttl

    # 设置内存缓存
    self.memory_cache[cache_key] = (data, time.time() + self.memory_ttl)

    # 设置Redis缓存
    if self.redis:
        self.redis.setex(cache_key, ttl, json.dumps(data))

6.2 异步优化
async def async_batch_translate(api, texts: List[str], source_lang: str, target_lang: str) -> List[TranslationResult]:
"""异步批量翻译"""
tasks = []

for text in texts:
    task = api.translate_async(text, source_lang, target_lang)
    tasks.append(task)

results = await asyncio.gather(*tasks, return_exceptions=True)

# 处理结果
processed_results = []
for result in results:
    if isinstance(result, Exception):
        processed_results.append(TranslationResult(
            success=False,
            code=500,
            message=str(result),
            data={},
            source_text="",
            translated_text="",
            source_lang=source_lang,
            target_lang=target_lang,
            engine_used="unknown",
            translation_time=0.0
        ))
    else:
        processed_results.append(result)

return processed_results

七、最佳实践总结
7.1 核心优势
智能路由:自动选择最佳翻译引擎
质量保障:实时评估翻译质量
成本控制:精确跟踪翻译成本
术语管理:支持专业领域术语库
性能优化:多级缓存和异步处理
7.2 使用建议
质量优先:技术文档使用OpenAI/Google引擎
成本优先:日常文本使用百度/腾讯引擎
术语定制:专业领域必须使用术语库
批量处理:大规模翻译使用批量接口
成本监控:定期检查翻译成本
7.3 部署建议
Redis缓存:使用Redis存储缓存和术语库
连接池:配置HTTP连接池提高性能
监控告警:设置成本和质量告警
负载均衡:多引擎部署确保高可用
附录:快速开始模板

quick_start.py

from universal_translation import UniversalTranslationAPI, TranslationConfig
import redis

1. 初始化

redis_client = redis.Redis.from_url(TranslationConfig.REDIS_URL)
api = UniversalTranslationAPI(TranslationConfig, redis_client)

2. 基础翻译

result = api.translate(
text="Hello, world! This is a translation example.",
source_lang="en",
target_lang="zh"
)

if result.success:
print(f"译文: {result.translated_text}")
print(f"引擎: {result.engine_used}")
print(f"质量: {result.quality_score:.2f}")
print(f"成本: ¥{result.cost:.4f}")

3. 批量翻译

texts = ["Text 1", "Text 2", "Text 3"]
results = api.batch_translate(texts, "en", "zh")

4. 高级功能

result = api.translate(
text="AI and Machine Learning",
source_lang="en",
target_lang="zh",
strategy="quality",
glossary_id="tech_glossary"
)
通过本攻略,您应该能够:
理解全能型翻译接口的完整功能架构
实现智能路由和多引擎融合翻译
构建高质量的企业级翻译解决方案
有效控制翻译成本和质量
在实际业务中灵活应用翻译服务
建议根据实际业务需求配置合适的翻译引擎组合,并遵循最佳实践确保系统的稳定性和可维护性。

相关文章
|
1月前
|
人工智能 安全 调度
AI工程vs传统工程 —「道法术」中的变与不变
本文从“道、法、术”三个层面对比AI工程与传统软件工程的异同,指出AI工程并非推倒重来,而是在传统工程坚实基础上,为应对大模型带来的不确定性(如概率性输出、幻觉、高延迟等)所进行的架构升级:在“道”上,从追求绝对正确转向管理概率预期;在“法”上,延续分层解耦、高可用等原则,但建模重心转向上下文工程与不确定性边界控制;在“术”上,融合传统工程基本功与AI新工具(如Context Engineering、轨迹可视化、多维评估体系),最终以确定性架构驾驭不确定性智能,实现可靠价值交付。
370 41
AI工程vs传统工程 —「道法术」中的变与不变
|
25天前
|
人工智能 算法 架构师
开源算法引爆GEO行业洗牌:王耀恒预言的“信息营养师”时代正式到来
马斯克宣布开源推荐算法,引爆GEO行业巨变。郑州讲师王耀恒早前预言的“算法祛魅”时代提前到来。虚假排名、AI投毒等灰色手段难以为继,“信息营养师”崛起。企业需重构竞争力:体检GEO健康度、设立伦理委员会、构建知识本体、培养首席信息架构师。透明化时代,唯有真实价值与长期主义才能赢得未来。(238字)
|
17天前
|
人工智能 关系型数据库 Serverless
2 天,用函数计算 AgentRun 爆改一副赛博朋克眼镜
2 天将吃灰的 Meta 眼镜改造成“交警Copilot”:通过阿里云函数计算 AgentRun 实现端-管-云协同,利用 Prompt 驱动交通规则判断,结合 OCR 与数据库查询,打造可动态扩展的智能执法原型,展现 Agent 架构在真实场景中的灵活与高效。
302 45
|
1月前
|
人工智能 自然语言处理 API
数据合成篇|多轮ToolUse数据合成打造更可靠的AI导购助手
本文提出一种面向租赁导购场景的工具调用(Tool Use)训练数据合成方案,以支付宝芝麻租赁助理“小不懂”为例,通过“导演-演员”式多智能体框架生成拟真多轮对话。结合话题路径引导与动态角色交互,实现高质量、可扩展的合成数据生产,并构建“数据飞轮”推动模型持续优化。实验表明,该方法显著提升模型在复杂任务中的工具调用准确率与多轮理解能力。
354 43
数据合成篇|多轮ToolUse数据合成打造更可靠的AI导购助手
|
26天前
|
人工智能 自然语言处理 运维
阿里开源 Assistant Agent,助力企业快速构建答疑、诊断智能助手
一款快速构建智能客服、诊断助手、运维助手、AIOps 的开源框架。
680 58
|
11天前
|
存储 人工智能 自然语言处理
大模型应用:从问题到答案:LlamaIndex RAG系统工作流程详解.15
本文深入解析LlamaIndex核心概念与实战:Document(文档封装)、Node(语义切分)、Index(向量检索)、Query Engine(端到端问答)、Retriever(精准检索)及Response Synthesis(智能合成),配套本地Qwen+MiniLM代码示例,助力RAG快速落地。(238字)
144 22
|
21天前
|
人工智能 前端开发 JavaScript
HagiCode 实践:如何利用 GitHub Actions 实现 Docusaurus 自动部署
本文介绍了为AI代码助手HagiCode(原PCode)集成GitHub Pages自动部署的完整实践:基于Docusaurus框架,通过GitHub Actions实现main分支推送后自动构建、上传至gh-pages分支,解决手动部署低效易错问题,显著提升文档发布效率与可靠性。(239字)
87 12
|
4天前
|
缓存 NoSQL PHP
秒杀活动时系统在干什么 PHP 高并发场景优化指南
本文详解PHP应对秒杀高并发的全链路优化方案:通过负载均衡+自动扩容分担流量,Redis缓存热点数据减压DB,分库分表、读写分离与连接池提升数据库性能,JWT+Redis实现无状态会话,Kafka事件驱动保障库存一致性。240字
53 16
|
1月前
|
数据采集 监控 数据可视化
快速上手:LangChain + AgentRun 浏览器沙箱极简集成指南
AgentRun Browser Sandbox 是基于云原生函数计算的浏览器沙箱服务,为 AI Agent 提供安全、免运维的浏览器环境。通过 Serverless 架构与 CDP 协议支持,实现网页抓取、自动化操作等能力,并结合 VNC 实时可视化,助力大模型“上网”交互。
514 43
|
24天前
|
存储 弹性计算 安全
阿里云服务器选购参考:实例规格选择,购买和使用注意事项及最新价格
初次购买阿里云服务器的用户需了解云服务器的实例规格、性能差异、收费标准及活动价格。云服务器ECS提供多种实例规格,满足不同场景需求。用户应该根据业务需求选择合适的实例规格,并通过包年包月、按量付费等方式灵活控制成本。本文为大家介绍阿里云服务器实例规格及选型策略,最新收费标准和活动价格情况,以供参考。
217 6